Question
Question: The value of \(nP_{r}\) is equal to....
The value of nPr is equal to.
A
n−1Pr+rn−1Pr−1
B
n.6mun−1Pr+n−1⥂Pr−1
C
n(n−1Pr+n−1⥂Pr−1)
D
n−1Pr−1+n−1Pr
Answer
n−1Pr+rn−1Pr−1
Explanation
Solution
n−1Pr+r.n−1⥂Pr−1
=(n−1−r)!(n−1)!+r(n−r)!(n−1)! (∵nPr=(n−r)!n!)
= (n−1−r)!(n−1)!{1+r.n−r1}
= (n−1−r)!(n−r)!(n−1)!(n−rn)=(n−r)!n!=nPr.
Aliter : We know that
n−1Cr+n−1Cr−1=nCr
⇒ r!n−1Pr+(r−1)!n−1Pr−1=r!n⥂Pr ⇒ n−1Pr+r.n−1Pr−1=nPr.