Solveeit Logo

Question

Question: The value of \(nP_{r}\) is equal to....

The value of nPrnP_{r} is equal to.

A

n1Pr+rn1Pr1n - 1P_{r} + r^{n - 1}P_{r - 1}

B

n.6mun1Pr+n1Pr1n.\mspace{6mu}^{n - 1}P_{r} +^{n - 1} ⥂ P_{r - 1}

C

n(n1Pr+n1Pr1)n(^{n - 1}P_{r} +^{n - 1} ⥂ P_{r - 1})

D

n1Pr1+n1Prn - 1P_{r - 1} +^{n - 1}P_{r}

Answer

n1Pr+rn1Pr1n - 1P_{r} + r^{n - 1}P_{r - 1}

Explanation

Solution

n1Pr+r.n1Pr1n - 1P_{r} + r.^{n - 1} ⥂ P_{r - 1}

=(n1)!(n1r)!+r(n1)!(nr)!= \frac{(n - 1)!}{(n - 1 - r)!} + r\frac{(n - 1)!}{(n - r)!} (nPr=n!(nr)!)\left( \because^{n}P_{r} = \frac{n!}{(n - r)!} \right)

= (n1)!(n1r)!{1+r.1nr}\frac{(n - 1)!}{(n - 1 - r)!}\left\{ 1 + r.\frac{1}{n - r} \right\}

= (n1)!(n1r)!(nr)!(nnr)=n!(nr)!=nPr\frac{(n - 1)!}{(n - 1 - r)!(n - r)!}\left( \frac{n}{n - r} \right) = \frac{n!}{(n - r)!} =^{n}P_{r}.

Aliter : We know that

n1Cr+n1Cr1=nCrn - 1C_{r} +^{n - 1}C_{r - 1} =^{n}C_{r}

n1Prr!+n1Pr1(r1)!=nPrr!\frac{n - 1P_{r}}{r!} + \frac{n - 1P_{r - 1}}{(r - 1)!} = \frac{n ⥂ P_{r}}{r!}n1Pr+r.n1Pr1=nPrn - 1P_{r} + r.^{n - 1}P_{r - 1} =^{n}P_{r}.