Solveeit Logo

Question

Question: The value of \({}^{n}{{C}_{0}}{}^{n}{{C}_{r}}+{}^{n}{{C}_{1}}{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{2}}{}^{n}...

The value of nC0nCr+nC1nCr+1+nC2nCr+2+....+nCnrnCn{}^{n}{{C}_{0}}{}^{n}{{C}_{r}}+{}^{n}{{C}_{1}}{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{2}}{}^{n}{{C}_{r+2}}+....+{}^{n}{{C}_{n-r}}{}^{n}{{C}_{n}} is equal to?
(a) 2nCr{}^{2n}{{C}_{r}}
(b) 2nCn+r{}^{2n}{{C}_{n+r}}
(c) 2nCr1{}^{2n}{{C}_{r-1}}
(d) 2nCr+1{}^{2n}{{C}_{r+1}}

Explanation

Solution

Use the binomial expansion of the expression (1+x)n{{\left( 1+x \right)}^{n}} given as (1+x)n=nC0x0+nC1x1+nC2x2+....+nCnxn{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}+{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}+....+{}^{n}{{C}_{n}}{{x}^{n}} and assume it as equation (i). Now, interchange the place of 1 and x in the expression (1+x)n{{\left( 1+x \right)}^{n}} and then use the same binomial expansion to write (x+1)n=nC0xn+nC1xn1+nC2xn2+....+nCnx0{{\left( x+1 \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}+....+{}^{n}{{C}_{n}}{{x}^{0}} and assume it as expression (ii). Multiply equation (i) and (ii) and check the terms of x in which we will get the coefficients nC0nCr+nC1nCr+1+nC2nCr+2+....+nCnrnCn{}^{n}{{C}_{0}}{}^{n}{{C}_{r}}+{}^{n}{{C}_{1}}{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{2}}{}^{n}{{C}_{r+2}}+....+{}^{n}{{C}_{n-r}}{}^{n}{{C}_{n}}. Write the formula for the coefficient of the general term of (1+x)2n{{\left( 1+x \right)}^{2n}} given as Ta+1=2nCa{{T}_{a+1}}={}^{2n}{{C}_{a}} and substitute the suitable value of a in terms of n and r. Use the property pCq=pCpq{}^{p}{{C}_{q}}={}^{p}{{C}_{p-q}} to get the answer.

Complete step-by-step solution:
Here we have been provided with the expression nC0nCr+nC1nCr+1+nC2nCr+2+....+nCnrnCn{}^{n}{{C}_{0}}{}^{n}{{C}_{r}}+{}^{n}{{C}_{1}}{}^{n}{{C}_{r+1}}+{}^{n}{{C}_{2}}{}^{n}{{C}_{r+2}}+....+{}^{n}{{C}_{n-r}}{}^{n}{{C}_{n}} and we are asked to find its value. Let us use the binomial expansion of (1+x)n{{\left( 1+x \right)}^{n}} in different manners to get the answer.
Now, we know that the expansion formula of the binomial expression (1+x)n{{\left( 1+x \right)}^{n}} is given as: -
(1+x)n=nC0x0+nC1x1+nC2x2+....+nCnxn\Rightarrow {{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{0}}+{}^{n}{{C}_{1}}{{x}^{1}}+{}^{n}{{C}_{2}}{{x}^{2}}+....+{}^{n}{{C}_{n}}{{x}^{n}} ………. (i)
Interchanging the terms 1 and x in the L.H.S of the above expression and then using the same formula we get,
(x+1)n=nC0xn+nC1xn1+nC2xn2+....+nCnx0\Rightarrow {{\left( x+1 \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}+....+{}^{n}{{C}_{n}}{{x}^{0}}
(x+1)n=nC0xn+nC1xn1+nC2xn2+nCrxnr+nCr+1xn(r+1)....+nCnx0\Rightarrow {{\left( x+1 \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}+{}^{n}{{C}_{r}}{{x}^{n-r}}+{}^{n}{{C}_{r+1}}{{x}^{n-\left( r+1 \right)}}....+{}^{n}{{C}_{n}}{{x}^{0}} ……… (ii)
Multiplying equations (i) and (ii) we will see that we will get the coefficients nC0nCr,nC1nCr+1,nC2nCr+2,....,nCnrnCn{}^{n}{{C}_{0}}{}^{n}{{C}_{r}},{}^{n}{{C}_{1}}{}^{n}{{C}_{r+1}},{}^{n}{{C}_{2}}{}^{n}{{C}_{r+2}},....,{}^{n}{{C}_{n-r}}{}^{n}{{C}_{n}} in terms containing xnr{{x}^{n-r}}. For example: - the term nC0{}^{n}{{C}_{0}} of equation (i) will be multiplied with the term containing nCr{}^{n}{{C}_{r}} of equation (ii) and so on the process will go forward for the other terms required. Therefore, the required sum will be equal to the coefficient of the term containing xnr{{x}^{n-r}} in the product (1+x)n×(x+1)n=(1+x)2n{{\left( 1+x \right)}^{n}}\times {{\left( x+1 \right)}^{n}}={{\left( 1+x \right)}^{2n}}.
The general term of the expression (1+x)2n{{\left( 1+x \right)}^{2n}} is given asTa+1=2nCaxa{{T}_{a+1}}={}^{2n}{{C}_{a}}{{x}^{a}}, so substituting a = n – r in the formula we get,
\Rightarrow Coefficient of xnr=2nCnr{{x}^{n-r}}={}^{2n}{{C}_{n-r}}
Using the formula pCq=pCpq{}^{p}{{C}_{q}}={}^{p}{{C}_{p-q}} we get,
\Rightarrow Coefficient of xnr=2nC2n(nr){{x}^{n-r}}={}^{2n}{{C}_{2n-\left( n-r \right)}}
\therefore Coefficient of xnr=2nCn+r{{x}^{n-r}}={}^{2n}{{C}_{n+r}}
Hence, option (b) is the correct answer.

Note: Remember some basic expansion formulas of the binomial expressions like (1+x)n{{\left( 1+x \right)}^{n}} and (x+y)n{{\left( x+y \right)}^{n}} as they are often used in the topic ‘Binomial Theorem’. Note that the formula pCq=pCpq{}^{p}{{C}_{q}}={}^{p}{{C}_{p-q}} can be proved by using the general formula of the expression pCq{}^{p}{{C}_{q}} given as p!q!(pq)!\dfrac{p!}{q!\left( p-q \right)!}. Just substitute p – q in place of q to get the required result.