Question
Question: The value of \[{}^n{C_0} - {}^n{C_1} + {}^n{C_2} - ...... + {( - 1)^{{n^n}}}{C_n}\]is: (A) 1 ...
The value of nC0−nC1+nC2−......+(−1)nnCnis:
(A) 1
(B) 0
(c) 2
(c) n
Solution
Hint- Proceed the solution with the help of binomial expansion. The binomial expansion of (1−x)n=nC0+nC1(−x)1+nC2(−x)2+..........+nCn(−x)n. If however we remove the variable x then we can get the series of binomial coefficients.
Complete step-by-step solution -
The binomial expansion of (1−x)n=nC0+nC1(−x)1+nC2(−x)2+..........+nCn(−x)n.
Put x=1 in this expansion.
Since, we know that (1−x)n=nC0+nC1(−x)1+nC2(−x)2+..........+nCn(−x)n
Putting x=1 on both sides,
(1−1)n=nC0+nC1(−1)1+nC2(−1)2+..........+nCn(−1)n ⇒0=nC0−nC1+nC2−..........+(−1)nnCn
⇒nC0−nC1+nC2−..........+(−1)nnCn=0
Note- Binomial theorem is a fast method of expanding a binomial expression that has been raised to some large power.
we got the expansion of (1−x)n using the expansion of
(1+x)n= nC0+nC1(x)1+nC2(x)2+..........+nCn(x)n, as (1−x)n= (1+(−x))n.
The expansion can also be written as (1+x)n= 1+1!nx+2!n(n−1)x2+3!n(n−1)(n−2)x3+........