Solveeit Logo

Question

Question: The value of \(\lim _ { x \rightarrow 0 }\) \(\frac { \int _ { 0 } ^ { x } \cos t ^ { 2 } d t } { x ...

The value of limx0\lim _ { x \rightarrow 0 } 0xcost2dtx\frac { \int _ { 0 } ^ { x } \cos t ^ { 2 } d t } { x } is –

A

1

B

0

C

– 1

D

2

Answer

1

Explanation

Solution

Let ƒ(x) = 0xcos2dt\int _ { 0 } ^ { \mathrm { x } } \cos ^ { 2 } \mathrm { dt } and g(x) = x. Then ƒ(0) = g(0) = 0.

\ limx0\lim _ { x \rightarrow 0 } = limx0\lim _ { x \rightarrow 0 }

Ž limx0\lim _ { x \rightarrow 0 } 0xcost2dtx\frac { \int _ { 0 } ^ { x } \cos t ^ { 2 } d t } { x } = limx0\lim _ { x \rightarrow 0 } cosx2.1cos0.01\frac { \cos x ^ { 2 } .1 - \cos 0.0 } { 1 }

= limx0\lim _ { x \rightarrow 0 } cosx21\frac { \cos x ^ { 2 } } { 1 } = cos 0 = 1.