Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 2 / 3 } x } { \sin ^ { 2 / 3 } x + \cos ^...

The value of 0π/2sin2/3xsin2/3x+cos2/3xdx\int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 2 / 3 } x } { \sin ^ { 2 / 3 } x + \cos ^ { 2 / 3 } x } d x is

A

π/4\pi / 4

B

π/2\pi / 2

C

3π/43 \pi / 4

D

π\pi

Answer

π/4\pi / 4

Explanation

Solution

I=0π/2sin2/3xsin2/3x+cos2/3xdxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 2 / 3 } x } { \sin ^ { 2 / 3 } x + \cos ^ { 2 / 3 } x } d x

or I=0π/2sin2/3(π2x)sin2/3(π2x)+cos2/3(π2x)dxI = \int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { 2 / 3 } \left( \frac { \pi } { 2 } - x \right) } { \sin ^ { 2 / 3 } \left( \frac { \pi } { 2 } - x \right) + \cos ^ { 2 / 3 } \left( \frac { \pi } { 2 } - x \right) } d x

or I=0π/2cos2/3xcos2/3x+sin2/3xdxI = \int _ { 0 } ^ { \pi / 2 } \frac { \cos ^ { 2 / 3 } x } { \cos ^ { 2 / 3 } x + \sin ^ { 2 / 3 } x } d x

Therefore, 2I=0π/2(sin2/3x+cos2/3x)(sin2/3x+cos2/3x)dx2 I = \int _ { 0 } ^ { \pi / 2 } \frac { \left( \sin ^ { 2 / 3 } x + \cos ^ { 2 / 3 } x \right) } { \left( \sin ^ { 2 / 3 } x + \cos ^ { 2 / 3 } x \right) } d x

I=12[x]0π/2\Rightarrow I = \frac { 1 } { 2 } [ x ] _ { 0 } ^ { \pi / 2 } =π4= \frac { \pi } { 4 } .

Trick: 0π/2sinnxsinnx+cosnxdx=π4\int _ { 0 } ^ { \pi / 2 } \frac { \sin ^ { n } x } { \sin ^ { n } x + \cos ^ { n } x } d x = \frac { \pi } { 4 }.