Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { 1 } \tan ^ { - 1 } \left( \frac { 2 x - 1 } { 1 + x - x ^ { 2 } } \r...

The value of 01tan1(2x11+xx2)dx\int _ { 0 } ^ { 1 } \tan ^ { - 1 } \left( \frac { 2 x - 1 } { 1 + x - x ^ { 2 } } \right) d x is

A

1

B

0

C

1- 1

D

None of these

Answer

0

Explanation

Solution

=01tan1(x+(x1)1x(x1))dx= \int _ { 0 } ^ { 1 } \tan ^ { - 1 } \left( \frac { x + ( x - 1 ) } { 1 - x ( x - 1 ) } \right) d x

I=01(tan1x+tan1(x1))dxI = \int _ { 0 } ^ { 1 } \left( \tan ^ { - 1 } x + \tan ^ { - 1 } ( x - 1 ) \right) d x

I=01tan1xdx+01tan1(x1)dxI = \int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x + \int _ { 0 } ^ { 1 } \tan ^ { - 1 } ( x - 1 ) d x

I=01tan1xdx+01tan1(1x1)dxI = \int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x + \int _ { 0 } ^ { 1 } \tan ^ { - 1 } ( 1 - x - 1 ) d x,

{Using 0af(x)dx=0af(ax)dx\int _ { 0 } ^ { a } f ( x ) d x = \int _ { 0 } ^ { a } f ( a - x ) d xin second integral}

I=01tan1xdx+01tan1(x)dxI = \int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x + \int _ { 0 } ^ { 1 } \tan ^ { - 1 } ( - x ) d x

I=01tan1xdx01tan1xdx=0I = \int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x - \int _ { 0 } ^ { 1 } \tan ^ { - 1 } x d x = 0.