Question
Question: The value of \(\int _ { 0 } ^ { 1 } \tan ^ { - 1 } \left( \frac { 2 x - 1 } { 1 + x - x ^ { 2 } } \r...
The value of ∫01tan−1(1+x−x22x−1)dx is
A
1
B
0
C
−1
D
None of these
Answer
0
Explanation
Solution
=∫01tan−1(1−x(x−1)x+(x−1))dx
I=∫01(tan−1x+tan−1(x−1))dx
I=∫01tan−1xdx+∫01tan−1(x−1)dx
I=∫01tan−1xdx+∫01tan−1(1−x−1)dx,
{Using ∫0af(x)dx=∫0af(a−x)dxin second integral}
I=∫01tan−1xdx+∫01tan−1(−x)dx
I=∫01tan−1xdx−∫01tan−1xdx=0.