Solveeit Logo

Question

Question: The value of \(\int _ { - 1 } ^ { 1 } \left( \sqrt { 1 + x + x ^ { 2 } } - \sqrt { 1 - x + x ^ { 2 }...

The value of 11(1+x+x21x+x2)dx\int _ { - 1 } ^ { 1 } \left( \sqrt { 1 + x + x ^ { 2 } } - \sqrt { 1 - x + x ^ { 2 } } \right) d x is

A

0

B

1

C

1- 1

D

None of these

Answer

0

Explanation

Solution

Let f(x)=1+x+x21x+x2f ( x ) = \sqrt { 1 + x + x ^ { 2 } } - \sqrt { 1 - x + x ^ { 2 } }.

Then f(x)=1x+x21+x+x2=f(x)f ( - x ) = \sqrt { 1 - x + x ^ { 2 } } - \sqrt { 1 + x + x ^ { 2 } } = - f ( x )

Hence f(x)f ( x ) is an odd function and so

11f(x)dx=0\int _ { - 1 } ^ { 1 } f ( x ) d x = 0.