Solveeit Logo

Question

Question: The value of \(I = \int _ { 0 } ^ { \pi / 2 } \frac { ( \sin x + \cos x ) ^ { 2 } } { \sqrt { 1 + \s...

The value of I=0π/2(sinx+cosx)21+sin2xdxI = \int _ { 0 } ^ { \pi / 2 } \frac { ( \sin x + \cos x ) ^ { 2 } } { \sqrt { 1 + \sin 2 x } } d xis

A

3

B

1

C

2

D

0

Answer

2

Explanation

Solution

=0π/2(sinx+cosx)2(sinx+cosx)2dx= \int _ { 0 } ^ { \pi / 2 } \frac { ( \sin x + \cos x ) ^ { 2 } } { \sqrt { ( \sin x + \cos x ) ^ { 2 } } } d x

I=0π/2(sinx+cosx)dx=(cosx+sinx)0π/2I = \int _ { 0 } ^ { \pi / 2 } ( \sin x + \cos x ) d x = ( - \cos x + \sin x ) _ { 0 } ^ { \pi / 2 }

I=1(1)=2I = 1 - ( - 1 ) = 2.