Solveeit Logo

Question

Question: The value of \(\int _ { 0 } ^ { 1 } \frac { \tan ^ { - 1 } x } { 1 + x ^ { 2 } } d x\) is...

The value of 01tan1x1+x2dx\int _ { 0 } ^ { 1 } \frac { \tan ^ { - 1 } x } { 1 + x ^ { 2 } } d x is

A

π/4\pi / 4

B

π2/32\pi ^ { 2 } / 32

C

1

D

None of these

Answer

π2/32\pi ^ { 2 } / 32

Explanation

Solution

I=01tan1x1+x2dxI = \int _ { 0 } ^ { 1 } \frac { \tan ^ { - 1 } x } { 1 + x ^ { 2 } } d x ; Put tan1x=t\tan ^ { - 1 } x = t11+x2dx=dt\frac { 1 } { 1 + x ^ { 2 } } d x = d t

I=0π/4tdt\therefore I = \int _ { 0 } ^ { \pi / 4 } t d t =[t22]0π/4= \left[ \frac { t ^ { 2 } } { 2 } \right] _ { 0 } ^ { \pi / 4 } =π232= \frac { \pi ^ { 2 } } { 32 }.