Solveeit Logo

Question

Question: The value of ![](https://cdn.pureessence.tech/canvas_551.png?top_left_x=876&top_left_y=300&width=300...

The value of {x2}\left\{ \frac{x}{2} \right\}dx is (where {x} denotes the fractional part of x}-

A

2nπ+1π2\frac{- 2n\pi + 1}{\pi^{2}}

B

nπ\frac{n}{\pi}

C

(n+1)π\frac{(n + 1)}{\pi}

D

2nπ1π2\frac{2n\pi - 1}{\pi^{2}}

Answer

2nπ+1π2\frac{- 2n\pi + 1}{\pi^{2}}

Explanation

Solution

I = 2n2n+1/2(sinx){x2}dx\int_{2n}^{2n + 1/2}{(\sin x)\left\{ \frac{x}{2} \right\} dx}

= 2n 02(sinπx)\int _ { 0 } ^ { 2 } ( \sin \pi x ) x2\frac{x}{2}dx +01/2(sinπx)x2dx\int_{0}^{1/2}{(\sin\pi x)}\frac{x}{2}dx

= 2nπ+1π2\frac{- 2n\pi + 1}{\pi^{2}}