Solveeit Logo

Question

Question: The value of \[\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left[ {1 - \tan \left( {\dfra...

The value of limxπ2[1tan(x2)](1sinx)[1+tan(x2)](π2x)3\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]\left( {1 - \sin x} \right)}}{{\left[ {1 + \tan \left( {\dfrac{x}{2}} \right)} \right]{{\left( {\pi - 2x} \right)}^3}}} is
A.\infty
B.18\dfrac{1}{8}
C.00
D.132\dfrac{1}{{32}}

Explanation

Solution

Hint : In order to solve the limit equation, initiate with splitting the parts and replacing the value of 1 in terms of tan to solve the first operand, then using the best suitable methods and formulas simplify it further to reduce the complexity and apply the limits. Use of trigonometric and limit formulas is mandatory.
Formula used:
[tan(a)tan(b)][1+tan(a)×tan(b)]=tan(ab)\dfrac{{\left[ {\tan \left( a \right) - \tan \left( b \right)} \right]}}{{\left[ {1 + \tan \left( a \right) \times \tan \left( b \right)} \right]}} = \tan (a - b)
1cosx=2sin2x21 - \cos x = 2{\sin ^2}\dfrac{x}{2}
limx0tan(x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan \left( x \right)}}{x} = 1
limx0sin(x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{x} = 1

Complete step-by-step answer :
We are given with an equation limxπ2[1tan(x2)](1sinx)[1+tan(x2)](π2x)3\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]\left( {1 - \sin x} \right)}}{{\left[ {1 + \tan \left( {\dfrac{x}{2}} \right)} \right]{{\left( {\pi - 2x} \right)}^3}}}.
Separating the tan\tan part and other, and we know that the limit part is also distributed.
So, the equation can be written as:
limxπ2[1tan(x2)][1+tan(x2)]limxπ2(1sinx)(π2x)3\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 + \tan \left( {\dfrac{x}{2}} \right)} \right]}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^3}}} ……………..(1)
Simplifying the equation:
First Part:
From trigonometric identities, we know that tanπ4=1\tan \dfrac{\pi }{4} = 1, so replacing two 1 by this in the fraction [1tan(x2)][1+1×tan(x2)]\dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 + 1 \times \tan \left( {\dfrac{x}{2}} \right)} \right]}}, and now it can be written as:
[1tan(x2)][1+1×tan(x2)]=[tan(π4)tan(x2)][1+tan(π4)×tan(x2)]\Rightarrow \dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 + 1 \times \tan \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\left[ {\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 + \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \left( {\dfrac{x}{2}} \right)} \right]}}
Now, from trigonometric formulas, we know that [tan(a)tan(b)][1+tan(a)×tan(b)]=tan(ab)\dfrac{{\left[ {\tan \left( a \right) - \tan \left( b \right)} \right]}}{{\left[ {1 + \tan \left( a \right) \times \tan \left( b \right)} \right]}} = \tan (a - b), so comparing this to the equation above, we get:
[tan(π4)tan(x2)][1+tan(π4)×tan(x2)]=tan(π4x2)\dfrac{{\left[ {\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 + \tan \left( {\dfrac{\pi }{4}} \right) \times \tan \left( {\dfrac{x}{2}} \right)} \right]}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)
Substituting this value in Equation 1, we get:
limxπ2[1tan(x2)][1+tan(x2)]limxπ2(1sinx)(π2x)3=limxπ2tan(π4x2)limxπ2(1sinx)(π2x)3\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 + \tan \left( {\dfrac{x}{2}} \right)} \right]}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^3}}} = \mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^3}}}
Splitting the term (π2x)3{\left( {\pi - 2x} \right)^3} into both the operands, and we get:
limxπ2tan(π4x2)(π2x)limxπ2(1sinx)(π2x)2\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{\left( {\pi - 2x} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left( {1 - \sin x} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}
Since, we know that sinx=cos(π2x)\sin x = \cos \left( {\dfrac{\pi }{2} - x} \right), so substituting this in the above equation:
limxπ2tan(π4x2)(π2x)limxπ2(1cos(π2x))(π2x)2\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{\left( {\pi - 2x} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left( {1 - \cos \left( {\dfrac{\pi }{2} - x} \right)} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}} …………(2)
Now, from trigonometric identities, we know that 1cosx=2sin2x21 - \cos x = 2{\sin ^2}\dfrac{x}{2}.
So, comparing (1cos(π2x))\left( {1 - \cos \left( {\dfrac{\pi }{2} - x} \right)} \right) with 1cosx=2sin2x21 - \cos x = 2{\sin ^2}\dfrac{x}{2}, we get:

1cos(π2x)=2sin2((π2x2)) 1cos(π2x)=2sin2((π4x2))   1 - \cos \left( {\dfrac{\pi }{2} - x} \right) = 2{\sin ^2}\left( {\left( {\dfrac{{\dfrac{\pi }{2} - x}}{2}} \right)} \right) \\\ \Rightarrow 1 - \cos \left( {\dfrac{\pi }{2} - x} \right) = 2{\sin ^2}\left( {\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right) \;

Substituting the upper value obtained in equation (2) , we get:
limxπ2tan(π4x2)(π2x)limxπ22sin2(π4x2)(π2x)2\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{\left( {\pi - 2x} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{{\left( {\pi - 2x} \right)}^2}}}
Dividing and multiplying (π2x)\left( {\pi - 2x} \right) by 44 and (π2x)2{\left( {\pi - 2x} \right)^2} by 42{4^2}.
limxπ2tan(π4x2)44(π2x)limxπ22sin2(π4x2)4242(π2x)2\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{\dfrac{4}{4}\left( {\pi - 2x} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{\dfrac{{{4^2}}}{{{4^2}}}{{\left( {\pi - 2x} \right)}^2}}}
Taking the denominators in the brackets:
limxπ2tan(π4x2)4(π2x4)limxπ22sin2(π4x2)42(π2x4)2\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{4\left( {\dfrac{{\pi - 2x}}{4}} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{4^2}{{\left( {\dfrac{{\pi - 2x}}{4}} \right)}^2}}}
On further solving, we get:
limxπ2tan(π4x2)4(π42x4)limxπ22sin2(π4x2)42(π42x4)2\mathop { \Rightarrow \lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{4\left( {\dfrac{\pi }{4} - \dfrac{{2x}}{4}} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{4^2}{{\left( {\dfrac{\pi }{4} - \dfrac{{2x}}{4}} \right)}^2}}}
limxπ2tan(π4x2)4(π4x2)limxπ22sin2(π4x2)42(π4x2)2\mathop { \Rightarrow \lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{4\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{4^2}{{\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}^2}}} …….(3)
From formulas of limits, we know that: limx0tan(x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan \left( x \right)}}{x} = 1 and same for limx0sin(x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin \left( x \right)}}{x} = 1, and we can see that it is same for the two operands.
So, we get:
limxπ2tan(π4x2)(π42x4)=1\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{\left( {\dfrac{\pi }{4} - \dfrac{{2x}}{4}} \right)}} = 1 and limxπ2sin2(π4x2)(π42x4)2=1\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{{\left( {\dfrac{\pi }{4} - \dfrac{{2x}}{4}} \right)}^2}}} = 1
Substituting these values in the equation 3, we get:
limxπ2tan(π4x2)4(π4x2)limxπ22sin2(π4x2)42(π4x2)2\mathop { \Rightarrow \lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{4\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2{{\sin }^2}\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}}{{{4^2}{{\left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)}^2}}}
14×1×242×1\Rightarrow \dfrac{1}{4} \times 1 \times \dfrac{2}{{{4^2}}} \times 1
Solving it further, we get:

14×216 132   \Rightarrow \dfrac{1}{4} \times \dfrac{2}{{16}} \\\ \Rightarrow \dfrac{1}{{32}} \;

Therefore, limxπ2[1tan(x2)](1sinx)[1+tan(x2)](π2x)3\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{\left[ {1 - \tan \left( {\dfrac{x}{2}} \right)} \right]\left( {1 - \sin x} \right)}}{{\left[ {1 + \tan \left( {\dfrac{x}{2}} \right)} \right]{{\left( {\pi - 2x} \right)}^3}}} is 132\dfrac{1}{{32}} .
Hence, Option D is correct.
So, the correct answer is “Option D”.

Note : Remember to use the suitable formulas when needed, otherwise it would make the equations complex to solve.
Before solving the equation, it is recommended to use L-Hospital's rule in order to check whether the equation is in indeterminate form or not, then start simplifying the formula.
It’s important to solve step by step rather than solving at once to avoid mistakes.