Solveeit Logo

Question

Question: The value of \(\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}\) ...

The value of limx1x+x2+......+xnnx1\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} is
$

{\text{a}}{\text{. n}} \\
{\text{b}}{\text{. }}\dfrac{{n + 1}}{2} \\
{\text{c}}{\text{. }}\dfrac{{n\left( {n + 1} \right)}}{2} \\
{\text{d}}{\text{. }}\dfrac{{n\left( {n - 1} \right)}}{2} \\
$

Explanation

Solution

Hint: - Apply L’ Hospital’s Rule.

Given limit is
limx1x+x2+......+xnnx1\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}
Put(x=1)\left( {x = 1} \right), in this limit
1+1+1+..................+1n11\Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}
As we know sum of 1 up to n terms is equal to n.
nn11=00\Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}
So, atx=1x = 1, the limit is in form of 00\dfrac{0}{0}
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.xx
As we know differentiation ofxn=nxn1{{\text{x}}^n} = n{x^{n - 1}}, and differentiation of constant term is zero.
limx1ddx(x+x2+......+xnn)ddx(x1)limx11+2x+3x2+........+nxn1010\Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}
Now, putx=1x = 1,1+2+3+......................+n1 \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}
1+2+3+......................+n=r=1nr\Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r
Now as we know sum of first natural numbers is (i.e.r=1nr=n(n+1)2)\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)
limx1x+x2+......+xnnx1=r=1nr=n(n+1)2\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}
Hence option (c) is the correct answer .

Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of 00\dfrac{0}{0} always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.