Solveeit Logo

Question

Question: The value of \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}\] is equal to A.\...

The value of limx01cosxx\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x} is equal to
A.12 - \dfrac{1}{{\sqrt 2 }}
B.12\dfrac{1}{{\sqrt 2 }}
C.00
D.Does not exist

Explanation

Solution

Hint : Here in this question, we have to determine the given limit of a function. To find this first we have to write the given function using a trigonometric double or half angle formula cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x then limit of a function ff Which is satisfies the condition left hand limit is equal to right hand limit (i.e., LHL=RHLLHL = RHL) by applying a limit in to the function using the properties of limits, otherwise limits doesn’t exist

Complete step by step solution:
The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
A left-hand limit means the limit of a function as it approaches from the left-hand side.
limxaf(x)=l1\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_1}
A right-hand limit means the limit of a function as it approaches from the right-hand side.
limxa+f(x)=l2\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = {l_2}
Consider the given limit function,
limx01cosxx\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}------(1)
By using a double of half angle formula: cos2x=12sin2x1cosx=2sin2x2\cos 2x = 1 - 2{\sin ^2}x \Rightarrow 1 - \cos x = 2{\sin ^2}\dfrac{x}{2}, then
As we know, \sqrt {1 - \cos x} = \left\\{ {\begin{array}{*{20}{c}} { - \sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x < 0} \\\ {\,\,\sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x \geqslant 0} \end{array}} \right.
Now, find the left-hand limit to the function (1)
limx0f(x)=limx01cosxx\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x}
limx0f(x)=limx02sinx2x\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} - \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}
By applying a properties of limit function, we have
limx0f(x)=2limx0sinx2x\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x}
Multiply and divide by 12\dfrac{1}{2}, then
limx0f(x)=2limx0sinx2x×(12)(12)\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}
limx0f(x)=2limx0(12)sinx2x2\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}
Again, by the properties of limit, we have
limx0f(x)=2(12)limx0sinx2x2\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}
As we know the standard limit limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1, then
limx0f(x)=22\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}
limx0f(x)=12\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{1}{{\sqrt 2 }}---------(2)
Now, find the right-hand limit to the function (1)
limx0+f(x)=limx0+1cosxx\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}
limx0+f(x)=limx0+2sinx2x\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}
By applying a properties of limit function, we have
limx0+f(x)=2limx0+sinx2x\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x}
Multiply and divide by 12\dfrac{1}{2}, then
limx0+f(x)=2limx0+sinx2x×(12)(12)\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}
limx0+f(x)=2limx0+(12)sinx2x2\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}
Again, by the properties of limit, we have
limx0+f(x)=2(12)limx0+sinx2x2\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}
As we know the standard limit limx0sinxx=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1, then
limx0+f(x)=22\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}
limx0+f(x)=12\Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \dfrac{1}{{\sqrt 2 }}---------(3)
Since, by (2) and (3)
limx01cosxxlimx0+1cosxx\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}
LHLRHLLHL \ne RHL
Hence, limit does not exist
Therefore, option (D) is correct
So, the correct answer is “Option D”.

Note : Remember, the limit of any function exists between any two consecutive integers. And the product and quotient properties of limits are defined as:
The function f(x)f\left( x \right) and g(x)g\left( x \right) is are non-zero finite values, given that
limxa(f(x)g(x))=limxaf(x)limxag(x)\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)
limxaf(x)g(x)=limxaf(x)limxag(x)\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}} and
Also limxakf(a)=klimxaf(a)\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right).