Solveeit Logo

Question

Question: The value of \(\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {...

The value of limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} is
A.1
B.32\dfrac{3}{2}
C.56\dfrac{5}{6}
D.712\dfrac{7}{{12}}

Explanation

Solution

We will use the sum of squares of n natural numbers given by n(n+1)(2n+1)6\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}, the sum of cubes of n natural numbers given by (n(n+1)2)2{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} and the sum of n natural numbers raise to the power 6 given by 142n(n+1)(2n+1)(3n4+6n33n+1)\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right). We will simplify these sum of the series after putting them in the required equation limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}. Upon further simplification, we will get the value of this function and we will check which of the solutions matches the obtained answer.

Complete step-by-step answer:
We are required to find the value of limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}.
We know that the sum of squares of first n natural numbers is given by: n2=n(n+1)(2n+1)6\sum {{n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}}
Similarly, the sum of the cubes of n natural numbers is given by: n3=(n(n+1)2)2\sum {{n^3} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} and the sum of n natural numbers raise to the power 6 is given by:n6=142n(n+1)(2n+1)(3n4+6n33n+1)\sum {{n^6} = } \dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)
Substituting these values in limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}, we get
limn(n2)(n3)(n6)=limnn(n+1)(2n+1)6(n(n+1)2)2142n(n+1)(2n+1)(3n4+6n33n+1)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2}}}{{\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)}}
Simplifying this equation, we get
limnn(n+1)(2n+1)6(n(n+1)2)2142n(n+1)(2n+1)(3n4+6n33n+1)=limn16(2n3+3n2+n)14(n4+2n3+n2)142(6n7+21n6+21n57n3+n)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2}}}{{\dfrac{1}{{42}}n\left( {n + 1} \right)\left( {2n + 1} \right)\left( {3{n^4} + 6{n^3} - 3n + 1} \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{1}{6}\left( {2{n^3} + 3{n^2} + n} \right)\dfrac{1}{4}\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{\dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)}}
Upon simplifying the numerator, we get
limn(n2)(n3)(n6)=limn124(2n7+4n6+2n5+3n6+6n5+3n4+n5+2n4+n3)142(6n7+21n6+21n57n3+n)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\dfrac{1}{{24}}\left( {2{n^7} + 4{n^6} + 2{n^5} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right)}}{{\dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)}}
Taking the constant term (124142=4224=74)\left( {\dfrac{{\dfrac{1}{{24}}}}{{\dfrac{1}{{42}}}} = \dfrac{{42}}{{24}} = \dfrac{7}{4}} \right) out of the limit and taking n7{n^7} common from both the numerator and the denominator, we get
limn(n2)(n3)(n6)=74limnn7(2+4n+2n2+3n+6n2+3n3+1n2+2n3+1n4)n7(6+21n+21n27n4+1n6)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\mathop {\lim }\limits_{n \to \infty } \dfrac{{{n^7}\left( {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right)}}{{{n^7}\left( {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right)}}
limn(n2)(n3)(n6)=74limn(2+4n+2n2+3n+6n2+3n3+1n2+2n3+1n4)(6+21n+21n27n4+1n6)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right)}}{{\left( {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right)}}
Applying the limit nn \to \infty , we get
limn(n2)(n3)(n6)=74(26)=712\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{4}\left( {\dfrac{2}{6}} \right) = \dfrac{7}{{12}} [ as n then 1n1=0]\left[ {\because {\text{ as n}} \to \infty {\text{ then }}\dfrac{1}{n} \to \dfrac{1}{\infty } = 0} \right]
Therefore, the value of limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} is 712\dfrac{7}{{12}}.
Hence, option (D) is correct.

Note: In such questions, you should know the formula of the sum of the series or expansion used since these are questions which have direct implementation of the standard formulae and are quite easy yet lengthy but you can score well. You can also solve this question by using L’ Hopital’s rule but it would be more time consuming and complicated as well.