Solveeit Logo

Question

Question: The value of \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {...

The value of limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} is
(a)1
(b)32\dfrac{3}{2}
(c)56\dfrac{5}{6}
(d)712\dfrac{7}{{12}}

Explanation

Solution

Here, we will first use the formulae of sums, n2=n(n+1)(n+2)6\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}, n3=[n(n+1)2]2\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} and n6=142(6n7+21n6+21n57n3+n)\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right) in the given expression and then taking nn \to \infty on right hand side of the above equation, 1n0\dfrac{1}{n} \to 0 to find the required value.

Complete step-by-step answer:
We are given limn(n2)(n3)(n6)\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}.

Using the formulae of sums, n2=n(n+1)(n+2)6\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}, n3=[n(n+1)2]2\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2} and n6=142(6n7+21n6+21n57n3+n)\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right) in the above expression, we get

limn(n2)(n3)(n6)=limn[n(n+1)(n+2)6][n(n+1)2]2[6n7+21n6+21n57n3+n42] limn(n2)(n3)(n6)=limn[2n3+3n2+n6][n4+2n3+n24][6n7+21n6+21n57n3+n42] limn(n2)(n3)(n6)=[(2n3+3n2+n)(n4+2n3+n2)24][6n7+21n6+21n57n3+n42] limn(n2)(n3)(n6)=limn42[2n7+4n6+3n6+6n5+3n4+n5+2n4+n3]24[6n7+21n6+21n57n3+n] limn(n2)(n3)(n6)=limn7[2n7+4n6+3n6+6n5+3n4+n5+2n4+n3]4[6n7+21n6+21n57n3+n]  \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\\

Dividing the numerator and denominator by n7{n^7} in right side of the above equation, we get

limn(n2)(n3)(n6)=limn7[2n7+4n6+3n6+6n5+3n4+n5+2n4+n3n7]4[6n7+21n6+21n57n3+nn7] limn(n2)(n3)(n6)=limn7[2n7n7+4n6n7+2n5n7+3n6n7+6n5n7+3n4n7+n5n7+2n4n7+n3n7]4[6n7n7+21n6n7+21n5n77n3n7+nn7] limn(n2)(n3)(n6)=limn7[2+4n+2n2+3n+6n2+3n3+1n2+2n3+1n4]4[6+21n+21n27n4+1n6]  \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\\

When taking nn \to \infty on right hand side of the above equation, 1n0\dfrac{1}{n} \to 0, we get

limn(n2)(n3)(n6)=7[2+0+0+0+0+0+0+0+0]4[6+0+00+0] limn(n2)(n3)(n6)=7246 limn(n2)(n3)(n6)=712  \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\\ \Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\\

Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.