Solveeit Logo

Question

Question: The value of *m* for which \(y = mx + 6\) is a tangent to the hyperbola \(\frac{x^{2}}{100} - \frac...

The value of m for which y=mx+6y = mx + 6 is a tangent to the

hyperbola x2100y249=1\frac{x^{2}}{100} - \frac{y^{2}}{49} = 1, is

A

y=±baxy = \pm \frac{b}{a}x

B

2017\sqrt{\frac{20}{17}}

C

x2y2=a2x^{2} - y^{2} = a^{2}

D

203\sqrt{\frac{20}{3}}

Answer

y=±baxy = \pm \frac{b}{a}x

Explanation

Solution

For condition of tangency, c2=a2m2b2c^{2} = a^{2}m^{2} - b^{2} . Here c=λc = \lambda, a=10,b=7a = 10,b = 7

Then, (6)2=(10)2.m2(7)2(6)^{2} = (10)^{2}.m^{2} - (7)^{2}

36=100m24936 = 100m^{2} - 49100m2=85100m^{2} = 85m2=1720m^{2} = \frac{17}{20}m=1720m = \sqrt{\frac{17}{20}}