Solveeit Logo

Question

Question: The value of m for which the function \(f(x) = \left\{ \begin{matrix} mx^{2},x \leq 1 \\ 2x,x > 1 \e...

The value of m for which the function f(x)={mx2,x12x,x>1 f(x) = \left\{ \begin{matrix} mx^{2},x \leq 1 \\ 2x,x > 1 \end{matrix} \right.\ is continuous at x=1x = 1, is

A

0

B

1

C

2

D

Does not exist

Answer

2

Explanation

Solution

LHL = limx1f(x)=limh0m(1h)2=m\lim_{x \rightarrow 1^{-}}f(x) = \lim_{h \rightarrow 0}m(1 - h)^{2} = m

RHL = limx1+f(x)=limh02(1+h)=2\lim_{x \rightarrow 1^{+}}f(x) = \lim_{h \rightarrow 0}2(1 + h) = 2 and f(1)=mf(1) = m

Function is continuous at x=1x = 1, x21>0x ^ { 2 } - 1 > 0 LHL = RHL = f(1)f(1)

Therefore m=2m = 2.