Question
Question: The value of $\log_{10}\left(\frac{\sum\limits_{i=0}^{r}{^{n}C_{2i}\ ^{n-2i}C_{r-i}}}{\sum\limits_{i...
The value of log10i=r∑nnCi 2iC2r(43)n−i(41)i−ri=0∑rnC2i n−2iCr−i (n≥2r) is :

A
2
B
1
C
0
D
None
Answer
0
Explanation
Solution
We wish to evaluate
L=log10(DN),whereN=i=0∑r(2in)(r−in−2i), D=i=r∑n(in)(2r2i)(43)n−i(41)i−r,with n≥2r.
A good strategy is to “test” the expression for small values of n and r and see if a pattern emerges.
Step 1. Testing for r=1,n=2:
The numerator:
N=(02)(12)+(22)(00)=(1⋅2)+(1⋅1)=2+1=3.The denominator:
D===(12)(22)(43)1(41)0+(22)(24)(43)0(41)12⋅1⋅43+1⋅6⋅1⋅4146+46=412=3.Thus, DN=33=1 so that
L=log10(1)=0.Step 2. Testing for r=1,n=3:
The numerator:
N=(03)(13)+(23)(01)=1⋅3+3⋅1=3+3=6.The denominator:
D===(13)(22)(43)2(41)0+(23)(24)(43)1(41)1+(33)(26)(43)0(41)23⋅1⋅169+3⋅6⋅43⋅41+1⋅15⋅1⋅1611627+1654+1615=1696=6.Thus, DN=6/6=1 and again
L=log10(1)=0.Step 3. Testing for r=2,n=5:
The numerator:
N===(05)(25)+(25)(13)+(45)(01)1⋅10+10⋅3+5⋅110+30+5=45.Now, the denominator:
D====(25)(44)(43)3(41)0+(35)(46)(43)2(41)1+(45)(48)(43)1(41)2+(55)(410)(43)0(41)310⋅1⋅6427+10⋅15⋅169⋅41+5⋅70⋅43⋅161+1⋅210⋅1⋅64164270+641350+641050+6421064270+1350+1050+210=642880=45.Again, DN=45/45=1 so that
L=log10(1)=0.Since the ratio DN consistently equals 1, we conclude that
log10(DN)=log10(1)=0.Thus, the answer is 0 corresponding to option (C).