Solveeit Logo

Question

Question: The value of \[{\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{2...

The value of log13(72991274334log23){\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right)
1.1-1
2.1
3.2
4.Zero

Explanation

Solution

Here, we will first convert all the exponents in fractional form. Then we will use the basic properties of exponents for all the exponentials inside the bracket and here we will also use the property of logarithms to simplify the given expressions further.

Complete step-by-step answer:
Here, we have to find the value of the given expression log13(72991274334log23){\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right)
We can write 729 as 36{3^6} and 27 as 33{3^3}and 9 as 32{3^2}.
log13(72991274334log23)=log13(36(32)1(33)433(22)log23){\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6} \cdot \sqrt[3]{{{{\left( {{3^2}} \right)}^{ - 1}} \cdot {{\left( {{3^3}} \right)}^{ - \dfrac{4}{3}}}}}} }}{{{{\left( {{2^2}} \right)}^{{{\log }_2}3}}}}} \right)
Now, we will multiply the powers of exponentials. Therefore, we get
log13(72991274334log23)=log13(3632×13(3×43)322×log23) log13(72991274334log23)=log13(36.32.34322×log23)\begin{array}{l} \Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6} \cdot \sqrt[3]{{{3^2}^{ \times - 1} \cdot {3^{\left( {3 \times - \dfrac{4}{3}} \right)}}}}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)\\\ \Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6}.\sqrt[3]{{{3^{ - 2}}{{.3}^{ - 4}}}}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)\end{array}
We know when the powers with the same base are multiplied, their exponents get added log13(72991274334log23)=log13(3632+(4)322×log23) log13(72991274334log23)=log13(3636322×log23)\begin{array}{l} \Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6} \cdot \sqrt[3]{{{3^{ - 2 + \left( { - 4} \right)}}}}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)\\\ \Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6} \cdot \sqrt[3]{{{3^{ - 6}}}}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)\end{array}
Now, we will find the cube root of the exponential 36{3^{ - 6}}.
log13(72991274334log23)=log13(363222×log23)\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6} \cdot {3^{ - 2}}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)
We know when the powers with the same base are multiplied, their exponents get added.
log13(72991274334log23)=log13(36+(2)22×log23)\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6}^{ + \left( { - 2} \right)}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)
On further simplification, we get
log13(72991274334log23)=log13(36222×log23) log13(72991274334log23)=log13(3422×log23)\begin{array}{l} \Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^6}^{ - 2}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)\\\ \Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {{3^4}} }}{{{2^2}^{ \times {{\log }_2}3}}}} \right)\end{array}
Now, we will find the square root of the exponential 34{3^4}.
log13(72991274334log23)=log13(3222×log23)\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{{3^2}}}{{{2^2}^{ \times {{\log }_2}3}}}} \right)
We know one property of logarithm that logabn=nlogab{\log _a}{b^n} = n{\log _a}b .
Therefore, using this property, we get
log13(72991274334log23)=log13(322log232)\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{{3^2}}}{{{2^{{{\log }_2}{3^2}}}}}} \right)
Now, we will again simplify the term in numerator using the property of logarithm.
We know the property of logarithm that logbbn=n{\log _b}{b^n} = n.
Therefore, using this property, we get
log13(72991274334log23)=log13(3232)\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}\left( {\dfrac{{{3^2}}}{{{3^2}}}} \right)
On further simplification, we get
log13(72991274334log23)=log131\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}1
We know the property of logarithm that logb1=0{\log _b}1 = 0.
Therefore, we get
log13(72991274334log23)=log131=0\Rightarrow {\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729 \cdot \sqrt[3]{{{9^{ - 1}} \cdot {{27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) = {\log _{\dfrac{1}{3}}}1 = 0
Thus, the value of log13(729.91.274334log23){\log _{\dfrac{1}{3}}}\left( {\dfrac{{\sqrt {729.\sqrt[3]{{{9^{ - 1}}{{.27}^{ - \dfrac{4}{3}}}}}} }}{{{4^{{{\log }_2}3}}}}} \right) is equal to zero.
Hence, the correct option is option 4.

Note: Here, we need to know all the properties of exponentials and the basic properties of logarithms. The logarithm is defined as the inverse function of the exponential function. We need to keep in mind that when we take the inverse of the exponential function, we get the logarithmic function.
In addition to this, the power property of exponentials states that to find a power of a power we just need to multiply the exponents.