Solveeit Logo

Question

Question: The value of \({\log _{\dfrac{1}{{20}}}}40\) is A. Greater than zero B. Smaller than zero C. G...

The value of log12040{\log _{\dfrac{1}{{20}}}}40 is
A. Greater than zero
B. Smaller than zero
C. Greater than zero and smaller than one
D. None of these

Explanation

Solution

Hint: To solve the question given above, we will find out what is the definition of logarithm function. Then, we will look at the general form of logarithm function i.e. logab{\log _a}b.Then, we will use the identity: loga2b=12logab{\log _{{a^2}}}b = \dfrac{1}{2}{\log _a}b to convert the given logarithm function into other terms. Then, we will determine in which range, the value of the given logarithm function.

Complete step-by-step answer:
Before we solve the question given above, we will first see what a logarithm function is. A logarithm is the power in which a number must be raised in order to get some other number. The logarithm is the inverse function to exponentiation. The general form of logarithm is logab{\log _a}b .Now, we are given a logarithm. We will assume that its value is x. Thus,
x=log12040..............(i)x = {\log _{\dfrac{1}{{20}}}}40{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (i)}}
Now, we will use an exponential property here, which says that a1=1a{a^{ - 1}} = \dfrac{1}{a} .Thus, we get:
x=log20140x = {\log _{{{20}^{ - 1}}}}40
Now, we will use a logarithm identity in the above question:
loga2b=12logab{\log _{{a^2}}}b = \dfrac{1}{2}{\log _a}b
Thus, we get:
x=log2040\x=log20(20×2)\begin{array}{l}x = - {\log _{20}}40\\\x = - {\log _{20}}\left( {20 \times 2} \right)\end{array}
Now, we will use log(a×b)=loga+logb\log \left( {a \times b} \right) = \log a + \log b in above equation. Thus, we will get:
x=[log2020+log202]\x=[1+log202]\begin{array}{l}x = - \left[ {{{\log }_{20}}20 + {{\log }_{20}}2} \right]\\\x = - \left[ {1 + lo{g_{20}}2} \right]\end{array}
Now, we will use logab=1logba{\log _a}b = \dfrac{1}{{{{\log }_b}a}} in above question:
x=[1+1log220] x=[1+1log2(4×5)] x=[1+1log24+log25] x=[1+12+log25]..................(ii)\begin{array}{l}x = - \left[ {1 + \dfrac{1}{{lo{g_2}20}}} \right]\\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{lo{g_2}\left( {4 \times 5} \right)}}} \right]\\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{lo{g_2}4 + lo{g_2}5}}} \right]\\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{2 + lo{g_2}5}}} \right]{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (ii)}}\end{array}
Now, we consider the value of log25{\log _2}5 as y. Thus,
y=log25.................(iii)y = {\log _2}5{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iii)}}
We use the identity: logab=log10blog10a{\log _a}b = \dfrac{{{{\log }_{10}}b}}{{{{\log }_{10}}a}}. Thus, we get:
y=log105log102 y=log10(102)log102\begin{array}{l} \Rightarrow y = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}2}}\\\ \Rightarrow y = \dfrac{{{{\log }_{10}}\left( {\dfrac{{10}}{2}} \right)}}{{{{\log }_{10}}2}}\end{array}
Now, we will use the identity: log(ab)=logalogb\log \left( {\dfrac{a}{b}} \right) = \log a - \log b
y=log1010log102log102 y=1log102log102\begin{array}{l} \Rightarrow y = \dfrac{{{{\log }_{10}}10 - {{\log }_{10}}2}}{{{{\log }_{10}}2}}\\\ \Rightarrow y = \dfrac{{1 - {{\log }_{10}}2}}{{{{\log }_{10}}2}}\end{array}
The value of log102{\log _{10}}2 is 0.3010. Thus, we have:
y=10.30100.3010 y=0.69900.3010 y=2.322.................(iv)\begin{array}{l} \Rightarrow y = \dfrac{{1 - 0.3010}}{{0.3010}}\\\ \Rightarrow y = \dfrac{{0.6990}}{{0.3010}}\\\ \Rightarrow y = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (iv)}}\end{array}
From (iii) and (iv), we have:
log25=2.322.................(v){\log _2}5 = 2.322{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (v)}}
From (ii) and (v), we have the following equation:
x=[1+12+2.322] x=[1+14.322] x=[1+0.231] x=[1.231] x=1.231...............(vi)\begin{array}{l} \Rightarrow x = - \left[ {1 + \dfrac{1}{{2 + 2.322}}} \right]\\\ \Rightarrow x = - \left[ {1 + \dfrac{1}{{4.322}}} \right]\\\ \Rightarrow x = - \left[ {1 + 0.231} \right]\\\ \Rightarrow x = - \left[ {1.231} \right]\\\ \Rightarrow x = - 1.231{\rm{ }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. }}{\rm{. (vi)}}\end{array}
From (i) and (vi), we can say that:
log12040=1.231 log12040<0\begin{array}{l}{\log _{\dfrac{1}{{20}}}}40 = - 1.231\\\ \Rightarrow {\log _{\dfrac{1}{{20}}}}40 < 0\end{array}
Hence, option B is correct.

Note: The alternate method to do this question is shown below.
Let the logarithm be logab{\log _a}b. If a>1 and b>1 then the value of logarithm will always be positive, if a>1 and b<1 then the value of logarithm will always be negative. If a<1 and b<1 then the value of logarithm is positive and if a<1 and b>1 then logarithm gives negative value. In our case a<1 and b>1. So the value of the logarithm will be less than 0.