Solveeit Logo

Question

Question: The value of \({\log _{10}}75 + {\log _{10}}28 - {\log _{10}}21\) is equal to A.\[{\log _{10}}81\]...

The value of log1075+log1028log1021{\log _{10}}75 + {\log _{10}}28 - {\log _{10}}21 is equal to
A.log1081{\log _{10}}81
B.log1020{\log _{10}}20
C.2
D.None of these

Explanation

Solution

Hint: Simplify the first two terms of the given expression using the formula logab+logac=loga(b×c){\log _a}b + {\log _a}c = {\log _a}\left( {b \times c} \right) and solve the resultant and the last term using the formula, logablogac=loga(ba){\log _a}b - {\log _a}c = {\log _a}\left( {\dfrac{b}{a}} \right). Then get the resultant answer using the formula of log, logam2=2logam{\log _a}{m^2} = 2{\log _a}m and logaa=1{\log _a}a = 1

Complete step-by-step answer:
Let us begin the question by simplifying the first two terms of the given expression.
The first log is added. Therefore, use the formula, logab+logac=loga(b×c){\log _a}b + {\log _a}c = {\log _a}\left( {b \times c} \right)
Hence, the first two terms in the expression log1075+log1028log1021{\log _{10}}75 + {\log _{10}}28 - {\log _{10}}21 can be simplified as log1075+log1028=log10(75×28) log1075+log1028=log10(2100)  {\log _{10}}75 + {\log _{10}}28 = {\log _{10}}\left( {75 \times 28} \right) \\\ {\log _{10}}75 + {\log _{10}}28 = {\log _{10}}\left( {2100} \right) \\\
Now, the given expression can be written as, log102100log1021{\log _{10}}2100 - {\log _{10}}21
We can simplify the above expression using the formula, logablogac=loga(ba){\log _a}b - {\log _a}c = {\log _a}\left( {\dfrac{b}{a}} \right)
The equation can be written as,
log102100log1021=log10210021 log102100log1021=log10100 log102100log1021=log10(10)2  {\log _{10}}2100 - {\log _{10}}21 = {\log _{10}}\dfrac{{2100}}{{21}} \\\ {\log _{10}}2100 - {\log _{10}}21 = {\log _{10}}100 \\\ {\log _{10}}2100 - {\log _{10}}21 = {\log _{10}}{\left( {10} \right)^2} \\\
By using the identity, logam2=2logam{\log _a}{m^2} = 2{\log _a}m, we can rewrite log10(10)2{\log _{10}}{\left( {10} \right)^2} this as 2log10102{\log _{10}}10
Also, logaa=1{\log _a}a = 1, therefore, 2log1010=2(1)=22{\log _{10}}10 = 2\left( 1 \right) = 2
Hence, the value of log1075+log1028log1021{\log _{10}}75 + {\log _{10}}28 - {\log _{10}}21 is equal to 2.
Hence, option C is the correct one.

Note: In this question identities of logarithm are used to solve it, such aslogab+logac=loga(b×c){\log _a}b + {\log _a}c = {\log _a}\left( {b \times c} \right), logablogac=loga(ba){\log _a}b - {\log _a}c = {\log _a}\left( {\dfrac{b}{a}} \right) , logam2=2logam{\log _a}{m^2} = 2{\log _a}m and logaa=1{\log _a}a = 1. The identities are used to simplify the expression.