Solveeit Logo

Question

Question: The value of \({\log _{0.5}}16\) is equal to A. \( - 4\) B. 4 C. \(\dfrac{1}{4}\) D. \( - \d...

The value of log0.516{\log _{0.5}}16 is equal to
A. 4 - 4
B. 4
C. 14\dfrac{1}{4}
D. 14 - \dfrac{1}{4}

Explanation

Solution

Hint: As, the base of the log in the given expression is 0.5 which is equals to 12\dfrac{1}{2} , convert 16 into powers of 2 and then write it as power of 12\dfrac{1}{2}. Then, use the formula, logam=mloga\log {a^m} = m\log a to find the value of the given expression.

Complete step by step answer:
First of all we will convert 16 in powers of 2.
As, 16=2×2×2×216 = 2 \times 2 \times 2 \times 2, so, 16 can be written as 16=2416 = {2^4}.
The number 0.5 in the expression, log0.516{\log _{0.5}}16 is the base of the log.
We know that, 0.5=120.5 = \dfrac{1}{2}
Thus, the expression can be rewritten as log12(24){\log _{\dfrac{1}{2}}}\left( {{2^4}} \right)
Also, 24=124{2^4} = \dfrac{1}{{{2^{ - 4}}}} because an=1an{a^n} = \dfrac{1}{{{a^{ - n}}}}
Therefore, the expression is rewritten as, log12(12)4{\log _{\dfrac{1}{2}}}{\left( {\dfrac{1}{2}} \right)^{ - 4}}
We know that am=mloga{a^m} = m\log a.
Hence, log12(12)4{\log _{\dfrac{1}{2}}}{\left( {\dfrac{1}{2}} \right)^{ - 4}} can be written as, 4log12(12) - 4{\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{2}} \right).
We know that, logaa=1{\log _a}a = 1, therefore, log12(12)=1{\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{2}} \right) = 1
On substituting the value log12(12)=1{\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{2}} \right) = 1 in the expression 4log12(12) - 4{\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{2}} \right) , we get,
4log12(12)=4(1)=4- 4{\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{2}} \right) = - 4\left( 1 \right) = - 4
Hence, the value log0.516{\log _{0.5}}16 = 4 - 4
Therefore, option A is correct.

Note: This question can alternatively be done by converting the logarithmic problem to exponential form. Let the given expression log0.516{\log _{0.5}}16 be equals to xx. Then, the given expression can be converted as, (0.5)x=16{\left( {0.5} \right)^x} = 16. Solve it by writing 16 as the power of 0.5 and then comparing the values.
(0.5)x=16 (0.5)x=24 (0.5)x=(12)4 (0.5)x=(0.5)4 x=4  {\left( {0.5} \right)^x} = 16 \\\ \Rightarrow {\left( {0.5} \right)^x} = {2^4} \\\ \Rightarrow {\left( {0.5} \right)^x} = {\left( {\dfrac{1}{2}} \right)^{ - 4}} \\\ \Rightarrow{\left( {0.5} \right)^x} = {\left( {0.5} \right)^{ - 4}} \\\ \Rightarrow x = - 4 \\\