Question
Mathematics Question on Limits
The value of limx→0∫0x2sec2tdtxsinx is
A
(A) 3
B
(B) 2
C
(C) 1
D
(D) 0
Answer
(C) 1
Explanation
Solution
Explanation:
Given:The expression limx→0∫0x2sec2tdtxsinxWe have to evaluate the given expression.Here, we'll use fundamental integrals of trigonometric functions.limx→0∫0x2sec2tdtxsinx[∫sec2tdt=tant]limx→0[tant]x2xsinx=limx→0tanx2xsinx=limx→0tanx2x2x2xx[ Dividing by x2 in Numerator & denominator ]limx→0(tanx2x2)sinxx=11=1[Using limit of trigonometric functions ]Hence, the correct option is (C).