Question
Question: The value of $\lim_{x\to 0} \left(\frac{\int_{0}^{x^2}sec^2t \ dt}{xsinx}\right)$ is...
The value of limx→0(xsinx∫0x2sec2t dt) is

Answer
1
Explanation
Solution
The limit is of the form 00. Using L'Hôpital's Rule twice or using the integral ∫sec2tdt=tant and standard limits, we find the value of the limit.
Using the integral result, the expression becomes xsinxtan(x2).
Rewrite as x2tan(x2)⋅sinxx.
Using standard limits limu→0utanu=1 and limx→0sinxx=1, the limit evaluates to 1×1=1.