Solveeit Logo

Question

Question: The value of $\lim_{x\to 0} \left(\frac{\int_{0}^{x^2}sec^2t \ dt}{xsinx}\right)$ is...

The value of limx0(0x2sec2t dtxsinx)\lim_{x\to 0} \left(\frac{\int_{0}^{x^2}sec^2t \ dt}{xsinx}\right) is

Answer

1

Explanation

Solution

The limit is of the form 00\frac{0}{0}. Using L'Hôpital's Rule twice or using the integral sec2tdt=tant\int sec^2 t dt = \tan t and standard limits, we find the value of the limit.

Using the integral result, the expression becomes tan(x2)xsinx\frac{\tan(x^2)}{x\sin x}.

Rewrite as tan(x2)x2xsinx\frac{\tan(x^2)}{x^2} \cdot \frac{x}{\sin x}.

Using standard limits limu0tanuu=1\lim_{u\to 0} \frac{\tan u}{u} = 1 and limx0xsinx=1\lim_{x\to 0} \frac{x}{\sin x} = 1, the limit evaluates to 1×1=11 \times 1 = 1.