Solveeit Logo

Question

Question: The value of $\lim_{x \to 0} \frac{(2^{\sin x}-1).\ln(1+\sin2x)}{x(\tan^{-1}x)}$ is $\ln k$. The val...

The value of limx0(2sinx1).ln(1+sin2x)x(tan1x)\lim_{x \to 0} \frac{(2^{\sin x}-1).\ln(1+\sin2x)}{x(\tan^{-1}x)} is lnk\ln k. The value of k is _______.

Answer

4

Explanation

Solution

We are asked to find the value of kk where the given limit is equal to lnk\ln k.

The limit is: L=limx0(2sinx1)ln(1+sin2x)xtan1xL = \lim_{x \to 0} \frac{(2^{\sin x}-1) \cdot \ln(1+\sin2x)}{x \cdot \tan^{-1}x}

We can rewrite the expression by multiplying and dividing by appropriate terms to utilize standard limits: L=limx0(2sinx1sinxln(1+sin2x)sin2xsinxxsin2xxxtan1x)L = \lim_{x \to 0} \left( \frac{2^{\sin x}-1}{\sin x} \cdot \frac{\ln(1+\sin2x)}{\sin2x} \cdot \frac{\sin x}{x} \cdot \frac{\sin2x}{x} \cdot \frac{x}{\tan^{-1}x} \right)

Now, we evaluate each part using standard limits:

  1. limx02sinx1sinx\lim_{x \to 0} \frac{2^{\sin x}-1}{\sin x}: Let u=sinxu = \sin x. As x0x \to 0, u0u \to 0. This becomes limu02u1u=ln2\lim_{u \to 0} \frac{2^u-1}{u} = \ln 2.
  2. limx0ln(1+sin2x)sin2x\lim_{x \to 0} \frac{\ln(1+\sin2x)}{\sin2x}: Let v=sin2xv = \sin 2x. As x0x \to 0, v0v \to 0. This becomes limv0ln(1+v)v=1\lim_{v \to 0} \frac{\ln(1+v)}{v} = 1.
  3. limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.
  4. limx0sin2xx=limx0sin2x2x2=12=2\lim_{x \to 0} \frac{\sin2x}{x} = \lim_{x \to 0} \frac{\sin2x}{2x} \cdot 2 = 1 \cdot 2 = 2.
  5. limx0xtan1x=1limx0tan1xx=11=1\lim_{x \to 0} \frac{x}{\tan^{-1}x} = \frac{1}{\lim_{x \to 0} \frac{\tan^{-1}x}{x}} = \frac{1}{1} = 1.

Multiplying these limits together: L=(ln2)(1)(1)(2)(1)=2ln2L = (\ln 2) \cdot (1) \cdot (1) \cdot (2) \cdot (1) = 2 \ln 2

We are given that the limit is equal to lnk\ln k: 2ln2=lnk2 \ln 2 = \ln k

Using the logarithm property mlna=lnamm \ln a = \ln a^m: ln(22)=lnk\ln (2^2) = \ln k ln4=lnk\ln 4 = \ln k

Therefore, k=4k = 4.