Question
Question: The value of $\lim_{x \to 0} \frac{(2^{\sin x}-1).\ln(1+\sin2x)}{x(\tan^{-1}x)}$ is $\ln k$. The val...
The value of limx→0x(tan−1x)(2sinx−1).ln(1+sin2x) is lnk. The value of k is _______.

Answer
4
Explanation
Solution
We are asked to find the value of k where the given limit is equal to lnk.
The limit is: L=limx→0x⋅tan−1x(2sinx−1)⋅ln(1+sin2x)
We can rewrite the expression by multiplying and dividing by appropriate terms to utilize standard limits: L=limx→0(sinx2sinx−1⋅sin2xln(1+sin2x)⋅xsinx⋅xsin2x⋅tan−1xx)
Now, we evaluate each part using standard limits:
- limx→0sinx2sinx−1: Let u=sinx. As x→0, u→0. This becomes limu→0u2u−1=ln2.
- limx→0sin2xln(1+sin2x): Let v=sin2x. As x→0, v→0. This becomes limv→0vln(1+v)=1.
- limx→0xsinx=1.
- limx→0xsin2x=limx→02xsin2x⋅2=1⋅2=2.
- limx→0tan−1xx=limx→0xtan−1x1=11=1.
Multiplying these limits together: L=(ln2)⋅(1)⋅(1)⋅(2)⋅(1)=2ln2
We are given that the limit is equal to lnk: 2ln2=lnk
Using the logarithm property mlna=lnam: ln(22)=lnk ln4=lnk
Therefore, k=4.