Solveeit Logo

Question

Question: The value of \(\lim_{x \rightarrow \infty}\left( \frac{x + 3}{x + 1} \right)^{x + 2}\) is...

The value of limx(x+3x+1)x+2\lim_{x \rightarrow \infty}\left( \frac{x + 3}{x + 1} \right)^{x + 2} is

A

e4e^{4}

B

00

C

1

D

e2e^{2}

Answer

e2e^{2}

Explanation

Solution

limx(x+3x+1)x+2=limx(1+2x+1)x+12.(x+2).2(x+1)\lim_{x \rightarrow \infty}\left( \frac{x + 3}{x + 1} \right)^{x + 2} = \lim_{x \rightarrow \infty}\left( 1 + \frac{2}{x + 1} \right)^{\frac{x + 1}{2}.(x + 2).\frac{2}{(x + 1)}}

=limx((1+2x+1)x+12)2.(1+2x1+1x)=e2limx[(1+2x)(1+1x)]=e2.= \lim_{x \rightarrow \infty}\left( \left( 1 + \frac{2}{x + 1} \right)^{\frac{x + 1}{2}} \right)^{2.\left( \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} \right)} = e^{2\lim_{x \rightarrow \infty}\left\lbrack \frac{\left( 1 + \frac{2}{x} \right)}{\left( 1 + \frac{1}{x} \right)} \right\rbrack} = e^{2}.

Alternative method : limx(x+3x+1)x+2\lim_{x \rightarrow \infty}\left( \frac{x + 3}{x + 1} \right)^{x + 2}

=limx(1+2x+1)x+2=elimx2x+1(x+2)=elimx2(1+2x1+1x)=e2\lim_{x \rightarrow \infty}\left( 1 + \frac{2}{x + 1} \right)^{x + 2} = e^{\lim_{x \rightarrow \infty}\frac{2}{x + 1}(x + 2)} = e^{\lim_{x \rightarrow \infty}2\left( \frac{1 + \frac{2}{x}}{1 + \frac{1}{x}} \right)} = e^{2}