Solveeit Logo

Question

Question: The value of \(\lim_{x \rightarrow 0}\left\{ \left\lbrack \frac{100x}{\sin x} \right\rbrack + \left\...

The value of limx0{[100xsinx]+[99sinxx]}\lim_{x \rightarrow 0}\left\{ \left\lbrack \frac{100x}{\sin x} \right\rbrack + \left\lbrack \frac{99\sin x}{x} \right\rbrack \right\}

where [ ] represents the greatest function is-

A

199

B

198

C

0

D

197

Answer

198

Explanation

Solution

We know that

x > sin x for all x > 0

and x < sin x for all x < 0

Ž xsinx\frac{x}{\sin x}> 1 and sinxx\frac{\sin x}{x}< 1 for x ® 0

Ž 100xsinx\frac{100x}{\sin x}> 100 and 99sinxx\frac{99\sin x}{x}< 99

\ limx0([100xsinx]+[99sinxx])\lim_{x \rightarrow 0}\left( \left\lbrack \frac{100x}{\sin x} \right\rbrack + \left\lbrack \frac{99\sin x}{x} \right\rbrack \right)

= limx0\lim_{x \rightarrow 0} (100 +98) = 198