Question
Question: The value of \(\lim_{n \rightarrow \infty}\left\lbrack \frac{n}{1 + n^{2}} + \frac{n}{4 + n^{2}} + \...
The value of limn→∞[1+n2n+4+n2n+9+n2n+....+2n1]is equal to
A
2π
B
4π
C
1
D
None of these
Answer
4π
Explanation
Solution
We have, limn→∞[1+n2n+4+n2n+......+2n1]
=limn→∞∑r=1nr2+n2n=limn→∞∑r=1nn2(1+n2r2)n
=limn→∞∑r=1nn(1+n2r2)1=∫011+x2dx,
{Applying formula, limn→∞∑r=0n−1{f(nr)}.n1=∫01f(x)dx}
=[tan−1x]01=tan−11−tan−10=4π.