Solveeit Logo

Question

Question: The value of \(\lim_{n \rightarrow \infty}\left\lbrack \frac{n}{1 + n^{2}} + \frac{n}{4 + n^{2}} + \...

The value of limn[n1+n2+n4+n2+n9+n2+....+12n]\lim_{n \rightarrow \infty}\left\lbrack \frac{n}{1 + n^{2}} + \frac{n}{4 + n^{2}} + \frac{n}{9 + n^{2}} + .... + \frac{1}{2n} \right\rbrackis equal to

A

π2\frac{\pi}{2}

B

π4\frac{\pi}{4}

C

1

D

None of these

Answer

π4\frac{\pi}{4}

Explanation

Solution

We have, limn[n1+n2+n4+n2+......+12n]\lim_{n \rightarrow \infty}\left\lbrack \frac{n}{1 + n^{2}} + \frac{n}{4 + n^{2}} + ...... + \frac{1}{2n} \right\rbrack

=limnr=1nnr2+n2=limnr=1nnn2(1+r2n2)= \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}\frac{n}{r^{2} + n^{2}} = \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}\frac{n}{n^{2}\left( 1 + \frac{r^{2}}{n^{2}} \right)}

=limnr=1n1n(1+r2n2)=01dx1+x2= \lim_{n \rightarrow \infty}\sum_{r = 1}^{n}{\frac{1}{n\left( 1 + \frac{r^{2}}{n^{2}} \right)} = \int_{0}^{1}\frac{dx}{1 + x^{2}}},

{Applying formula, limnr=0n1{f(rn)}.1n=01f(x)dx}\left\{ \text{Applying formula, }\lim_{n \rightarrow \infty}\sum_{r = 0}^{n - 1}{\left\{ f\left( \frac{r}{n} \right) \right\}.\frac{1}{n} = \int_{0}^{1}{f(x)dx}} \right\}

=[tan1x]01=tan11tan10=π4.= \lbrack\tan^{- 1}x\rbrack_{0}^{1} = \tan^{- 1}1 - \tan^{- 1}0 = \frac{\pi}{4}.