Solveeit Logo

Question

Mathematics Question on limits of trigonometric functions

The value of limx(x2sin(1x)x1x) \lim_{x \to \infty}\left(\frac{x^2 sin \left(\frac{1}{x}\right)-x} {1-|x|}\right) is

A

0

B

1

C

2

D

none of these

Answer

0

Explanation

Solution

limx[x2sin(1x)x1x]\lim_{x\to\infty} \left[\frac{x^{2} \sin\left(\frac{1}{x}\right) -x}{1-\left|x\right|}\right] = limx[x2sin(1x)x1x]=limxsin(x1)1x1x11\lim_{x\to\infty}\left[\frac{x^{2}\sin\left(\frac{1}{x}\right) -x}{1-x}\right] = \lim_{x\to\infty} \frac{\frac{\sin\left(x^{-1}\right)-1}{x^{-1}}}{x^{-1} -1} = limy0sinyy1y1=1101=0\lim_{y\to0 } \frac{\frac{\sin\,y}{y} -1}{y-1} = \frac{1-1}{0-1}=0