Solveeit Logo

Question

Mathematics Question on Limits

The value of
limx1(x21)sin2(πx)x42x3+2x1\lim_{{x \to 1}} \frac{{(x^2 - 1) \sin^2(\pi x)}}{{x^4 - 2x^3 + 2x - 1}}
is equal to

A

π26\frac{π²}{6}

B

π23\frac{π²}{3}

C

π22\frac{π²}{2}

D

π²

Answer

π²

Explanation

Solution

The correct answer is (D) : π²
limx1(x21)sin2(πx)x42x3+2x1\lim_{{x \to 1}} \frac{{(x^2 - 1) \sin^2(\pi x)}}{{x^4 - 2x^3 + 2x - 1}}
=limx1(x+1)(x1)sin2(πx)(x1)3(x+1)=\lim_{{x \to 1}} \frac{{(x+1)(x-1) \sin^2(\pi x)}}{{(x-1)^3(x+1)}}
Let x-1 = t
limt0(2+t)tsin2(πt)t3(t+2)\lim_{{t \to 0}} \frac{{(2+t)t \sin^2(\pi t)}}{{t^3(t+2)}} == limt0sin2(πt)π2t2π2\lim_{{t \to 0}} \frac{{\sin^2(\pi t)}}{{\pi^2t^2}} \cdot \pi^2 = π2\pi^2