Question
Mathematics Question on Limits
The value of
limx→1x4−2x3+2x−1(x2−1)sin2(πx)
is equal to
A
6π2
B
3π2
C
2π2
D
π²
Answer
π²
Explanation
Solution
The correct answer is (D) : π²
limx→1x4−2x3+2x−1(x2−1)sin2(πx)
=limx→1(x−1)3(x+1)(x+1)(x−1)sin2(πx)
Let x-1 = t
limt→0t3(t+2)(2+t)tsin2(πt) = limt→0π2t2sin2(πt)⋅π2 = π2