Question
Mathematics Question on Limits
The value of limx→02(x21−cosxcos2x3cos3x…10cos10x) is _____.
Answer
limx→02⋅x2(1−2!x2)(1−2!4x2)(1−2!9x2)⋯(1−2!100x2)
By expansion:
limx→02⋅x2[1−2x2][1−22x2][1−23x2]⋯[1−210x2].
Simplify the product:
limx→02⋅x21−[2x2+22x2+23x2+⋯+210x2].
The x2 terms cancel:
2⋅(21+22+23+⋯+210).
Simplify the summation:
2⋅21+2+3+⋯+10.
The sum of the first 10 natural numbers is:
210⋅11=55.
Final Answer: 55.