Solveeit Logo

Question

Mathematics Question on Limits

The value of limx02(1cosxcos2xcos3x3cos10x10x2)\lim_{x \to 0} 2 \left( \frac{1 - \cos x \sqrt{\cos 2x} \, \sqrt[3]{\cos 3x} \ldots \sqrt[10]{\cos 10x}}{x^2} \right) is _____.

Answer

limx02(1x22!)(14x22!)(19x22!)(1100x22!)x2\lim_{x \to 0} 2 \cdot \frac{\left( 1 - \frac{x^2}{2!} \right) \left( 1 - \frac{4x^2}{2!} \right) \left( 1 - \frac{9x^2}{2!} \right) \cdots \left( 1 - \frac{100x^2}{2!} \right)}{x^2}
By expansion:
limx02[1x22][12x22][13x22][110x22]x2.\lim_{x \to 0} 2 \cdot \frac{\left[ 1 - \frac{x^2}{2} \right] \left[ 1 - \frac{2x^2}{2} \right] \left[ 1 - \frac{3x^2}{2} \right] \cdots \left[ 1 - \frac{10x^2}{2} \right]}{x^2}.
Simplify the product:
limx021[x22+2x22+3x22++10x22]x2.\lim_{x \to 0} 2 \cdot \frac{1 - \left[ \frac{x^2}{2} + \frac{2x^2}{2} + \frac{3x^2}{2} + \cdots + \frac{10x^2}{2} \right]}{x^2}.
The x2x^2 terms cancel:
2(12+22+32++102).2 \cdot \left( \frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \cdots + \frac{10}{2} \right).
Simplify the summation:
21+2+3++102.2 \cdot \frac{1 + 2 + 3 + \cdots + 10}{2}.
The sum of the first 10 natural numbers is:
10112=55.\frac{10 \cdot 11}{2} = 55.
Final Answer: 55.