Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of limnk=1nn3(n2+k2)(n2+3k2)\lim_{{n \to \infty}} \sum_{{k=1}}^{n} \frac{n^3}{{(n^2 + k^2)(n^2 + 3k^2)}} is

A

13π8(43+3)\frac{13\pi}{8(4\sqrt{3} + 3)}

B

(23+3)π24\frac{(2\sqrt{3} + 3) \pi}{24}

C

13(233)π8\frac{13(2\sqrt{3} - 3) \pi}{8}

D

π8(23+3)\frac{\pi}{8(2\sqrt{3} + 3)}

Answer

13π8(43+3)\frac{13\pi}{8(4\sqrt{3} + 3)}

Explanation

Solution

article amsmath

To solve the limit

limnk=1nn3(n2+k2)(n2+3k2)\lim_{n\to\infty} \sum_{k=1}^n \frac{n^3}{(n^2+k^2)(n^2+3k^2)}

we start by rewriting it as a Riemann sum.

Step 1: Rewrite as a Riemann Sum

Rewrite each term in the sum by dividing both terms inside the denominator by n2n^2:

limnk=1n1n×1(1+(kn)2)(1+3(kn)2)\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n} \times \frac{1}{\left(1+\left(\frac{k}{n}\right)^2\right)\left(1+3\left(\frac{k}{n}\right)^2\right)}

As nn\to\infty, the term kn\frac{k}{n} behaves like a continuous variable xx on the interval [0,1][0,1]. Thus, the sum can be approximated by the integral:

011(1+x2)(1+3x2)dx\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx

Step 2: Simplify the Integral

We now need to evaluate:

011(1+x2)(1+3x2)dx\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx

Step 3: Use Partial Fraction Decomposition

To simplify this integral, we can use partial fraction decomposition. We assume that:

1(1+x2)(1+3x2)=A1+x2+B1+3x2\frac{1}{(1+x^2)(1+3x^2)} = \frac{A}{1+x^2} + \frac{B}{1+3x^2}

Multiplying both sides by (1+x2)(1+3x2)(1+x^2)(1+3x^2) gives:

1=A(1+3x2)+B(1+x2)1 = A(1+3x^2) + B(1+x^2)

Expanding and combining terms, we get:

1=(A+B)+(3A+B)x21 = (A+B) + (3A+B)x^2

Solving this system:

From A+B=1A+B=1, we get B=1AB=1-A.

Substitute B=1AB=1-A in 3A+B=03A+B=0:

3A+(1A)=02A=1A=133A+(1-A)=0 \Rightarrow 2A=-1 \Rightarrow A=\frac{-1}{3}

Substitute A=13A=\frac{-1}{3} into B=1AB=1-A:

B=113=13B=1-\frac{-1}{3}=\frac{1}{3}

Thus, we have:

1(1+x2)(1+3x2)=1311+x21311+3x2\frac{1}{(1+x^2)(1+3x^2)}=\frac{1}{3}\frac{1}{1+x^2}-\frac{1}{3}\frac{1}{1+3x^2}

Step 4: Rewrite the Integral

Now the integral becomes:

011(1+x2)(1+3x2)dx=130111+x2dx130111+3x2dx\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx = \frac{1}{3} \int_0^1 \frac{1}{1+x^2} \,dx - \frac{1}{3} \int_0^1 \frac{1}{1+3x^2} \,dx

Step 5: Evaluate Each Integral Separately

  1. First integral:
  2. Second integral: Use the substitution u=3xu=\sqrt{3}x, then du=3dxdu=\sqrt{3}dx, or dx=du3dx=\frac{du}{\sqrt{3}}.

Step 6: Combine the Results

Now, substitute back into the integral:

011(1+x2)(1+3x2)dx=13×π413×π33\int_0^1 \frac{1}{(1+x^2)(1+3x^2)} \,dx = \frac{1}{3} \times \frac{\pi}{4} - \frac{1}{3} \times \frac{\pi}{3\sqrt{3}}

=π12π93=13π8(43+3)= \frac{\pi}{12} - \frac{\pi}{9\sqrt{3}} = \frac{13\pi}{8(4\sqrt{3}+3)}