Question
Mathematics Question on Inverse Trigonometric Functions
The value of
\lim_{{n \to \infty}} 6\tan\left\\{\sum_{{r=1}}^{n} \tan^{-1}\left(\frac{1}{{r^2+3r+3}}\right)\right\\}
is equal to :
A
1
B
2
C
3
D
6
Answer
3
Explanation
Solution
The correct answer is (C) : 3
=\lim_{{n \to \infty}} 6\tan\left\\{\sum_{{r=1}}^{n} \tan^{-1}\left(\frac{1}{{r^2+3r+3}}\right)\right\\}
=\lim_{{n \to \infty}} 6\tan\left\\{\sum_{{r=1}}^{n} \tan^{-1}\left(\frac{{(r+2) - (r+1)}}{{1 + (r+2)(r+1)}}\right)\right\\}
=\lim_{{n \to \infty}} 6\tan\left\\{\sum_{{r=1}}^{n} (\tan^{-1}(r+2) - \tan^{-1}(r+1))\right\\}
limn→∞6tan(tan−1(n+2)−tan−1(2))
=6\tan\left\\{\frac{\pi}{2} - \cot^{-1}\left(\frac{1}{2}\right)\right\\}
=6tan(tan−1(21))=3