Solveeit Logo

Question

Question: The value of \(\lim _ { n \rightarrow \infty }\) \(\frac{\sqrt[4]{n^{5} + 2} - \sqrt[3]{n^{2} + 1}}...

The value of limn\lim _ { n \rightarrow \infty } n5+24n2+13n4+25n3+12\frac{\sqrt[4]{n^{5} + 2} - \sqrt[3]{n^{2} + 1}}{\sqrt[5]{n^{4} + 2} - \sqrt[2]{n^{3} + 1}}is –

A

1

B

0

C

–1

D

Answer

0

Explanation

Solution

limn\lim _ { n \rightarrow \infty } n5+24n2+13n4+25n3+12\frac { \sqrt [ 4 ] { \mathrm { n } ^ { 5 } + 2 } - \sqrt [ 3 ] { \mathrm { n } ^ { 2 } + 1 } } { \sqrt [ 5 ] { \mathrm { n } ^ { 4 } + 2 } - \sqrt [ 2 ] { \mathrm { n } ^ { 3 } + 1 } }

= limn\lim _ { n \rightarrow \infty }

= limn\lim _ { n \rightarrow \infty }

[On dividing the numerator and denominator by the highest power of n i.e. n3/2]

= limn\lim _ { n \rightarrow \infty } = 0001\frac { 0 - 0 } { 0 - 1 } = 0.

Hence (2) is correct answer.