Solveeit Logo

Question

Question: The value of \(\lim _ { n \rightarrow \infty } \frac { 1 } { n }\) \(\sum_{r = 1}^{n}\left( \frac{r...

The value of limn1n\lim _ { n \rightarrow \infty } \frac { 1 } { n } r=1n(rn+r)\sum_{r = 1}^{n}\left( \frac{r}{n + r} \right)is

A

ln 2

B

1 + ln 2

C

1 – ln 2

D

0

Answer

1 – ln 2

Explanation

Solution

limn\lim _ { n \rightarrow \infty } 1nr=1nrn+r\frac{1}{n}\sum_{r = 1}^{n}\frac{r}{n + r} = limn\lim _ { n \rightarrow \infty } 1nr=1n(rn1+rn)\frac{1}{n}\sum_{r = 1}^{n}\left( \frac{\frac{r}{n}}{1 + \frac{r}{n}} \right)

= 01xdx1+x\int_{0}^{1}\frac{xdx}{1 + x} = 01dx\int_{0}^{1}{dx}01dx1+x\int_{0}^{1}\frac{dx}{1 + x} = 1 – ln 2