Solveeit Logo

Question

Question: The value of $\left[\int_{0}^{2} [x^2 - x + 1] dx\right]$ where [.] denotes greatest integer functio...

The value of [02[x2x+1]dx]\left[\int_{0}^{2} [x^2 - x + 1] dx\right] where [.] denotes greatest integer function is

Answer

1

Explanation

Solution

To evaluate the integral [02[x2x+1]dx]\left[\int_{0}^{2} [x^2 - x + 1] dx\right], we first need to evaluate the definite integral I=02[x2x+1]dxI = \int_{0}^{2} [x^2 - x + 1] dx.

Let f(x)=x2x+1f(x) = x^2 - x + 1. This is a quadratic function. The minimum value of f(x)f(x) occurs at x=12x = \frac{1}{2}, and the minimum value is f(12)=34f\left(\frac{1}{2}\right) = \frac{3}{4}.

Now, let's find the values of f(x)f(x) at the endpoints of the interval [0,2][0, 2]: f(0)=1f(0) = 1 and f(2)=3f(2) = 3.

The range of f(x)f(x) for x[0,2]x \in [0, 2] is [3/4,3][3/4, 3]. We need to determine the intervals for xx where [f(x)][f(x)] takes different integer values.

  1. For x[0,1]x \in [0, 1]: The function f(x)f(x) decreases from f(0)=1f(0)=1 to f(1/2)=3/4f(1/2)=3/4, and then increases to f(1)=1f(1)=1. So, for x[0,1]x \in [0, 1], the range of f(x)f(x) is [3/4,1][3/4, 1]. For x(0,1)x \in (0, 1), 3/4f(x)<13/4 \le f(x) < 1, which means [f(x)]=0[f(x)] = 0. Therefore, 01[x2x+1]dx=010dx=0\int_{0}^{1} [x^2 - x + 1] dx = \int_{0}^{1} 0 dx = 0.

  2. For x[1,2]x \in [1, 2]: The function f(x)f(x) increases monotonically from f(1)=1f(1)=1 to f(2)=3f(2)=3. We need to find the point where f(x)f(x) crosses the integer value 22. Set f(x)=2f(x) = 2: x2x+1=2    x2x1=0x^2 - x + 1 = 2 \implies x^2 - x - 1 = 0. Using the quadratic formula, x=1±52x = \frac{1 \pm \sqrt{5}}{2}. Since x[1,2]x \in [1, 2], we take the positive root: x0=1+52x_0 = \frac{1 + \sqrt{5}}{2}.

    Now we split the integral from 11 to 22 at x0x_0:

    • For x[1,x0)x \in [1, x_0): 1f(x)<21 \le f(x) < 2, so [f(x)]=1[f(x)] = 1. 1x0[x2x+1]dx=1x01dx=[x]1x0=x01=1+521=512\int_{1}^{x_0} [x^2 - x + 1] dx = \int_{1}^{x_0} 1 dx = [x]_{1}^{x_0} = x_0 - 1 = \frac{1 + \sqrt{5}}{2} - 1 = \frac{\sqrt{5} - 1}{2}.

    • For x[x0,2]x \in [x_0, 2]: 2f(x)32 \le f(x) \le 3. For x[x0,2)x \in [x_0, 2), 2f(x)<32 \le f(x) < 3, so [f(x)]=2[f(x)] = 2. x02[x2x+1]dx=x022dx=[2x]x02=2(2)2x0=42(1+52)=35\int_{x_0}^{2} [x^2 - x + 1] dx = \int_{x_0}^{2} 2 dx = [2x]_{x_0}^{2} = 2(2) - 2x_0 = 4 - 2\left(\frac{1 + \sqrt{5}}{2}\right) = 3 - \sqrt{5}.

Now, sum up the contributions from all intervals: I=01[x2x+1]dx+1x0[x2x+1]dx+x02[x2x+1]dxI = \int_{0}^{1} [x^2 - x + 1] dx + \int_{1}^{x_0} [x^2 - x + 1] dx + \int_{x_0}^{2} [x^2 - x + 1] dx I=0+(512)+(35)=552I = 0 + \left(\frac{\sqrt{5} - 1}{2}\right) + (3 - \sqrt{5}) = \frac{5 - \sqrt{5}}{2}.

Finally, we need to find the greatest integer of II: [552]\left[\frac{5 - \sqrt{5}}{2}\right]. Since 52.236\sqrt{5} \approx 2.236, 5522.7642=1.382\frac{5 - \sqrt{5}}{2} \approx \frac{2.764}{2} = 1.382. Therefore, [552]=[1.382]=1\left[\frac{5 - \sqrt{5}}{2}\right] = [1.382] = 1.