Solveeit Logo

Question

Question: The value of \({\left( {{{\text{i}}^{{\text{18}}}}{\text{ + }}{{\left( {\dfrac{{\text{1}}}{{\text{i}...

The value of (i18 + (1i)25)3{\left( {{{\text{i}}^{{\text{18}}}}{\text{ + }}{{\left( {\dfrac{{\text{1}}}{{\text{i}}}} \right)}^{{\text{25}}}}} \right)^{\text{3}}}is equal to
A) 1 + i2\dfrac{{{\text{1 + i}}}}{{\text{2}}}
B) 2 + 2i{\text{2 + 2i}}
C) 1 - i2\dfrac{{{\text{1 - i}}}}{{\text{2}}}
D) 2 + 2i\sqrt {\text{2}} {\text{ + }}\sqrt {\text{2}} {\text{i}}
E) 2 - 2i{\text{2 - 2i}}

Explanation

Solution

We can simplify the expression using the powers of i{\text{i}}. We know that i raised to powers which are multiples of 4 are equal to 1. Using this we can simplify the powers of i to get the required value of the expression.

Complete step by step solution: We have the expression
(i18+(1i)25)3{\left( {{i^{18}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^3}
We can write the power of i{\text{i}} as multiples of 4 and its remainders. Then we get

(i18+(1i)25)3=(i4×4+2+(1i)4×6+1)3 =((i4)4×i2+1(i4)6×i1)3  {\left( {{i^{18}} + {{\left( {\dfrac{1}{i}} \right)}^{25}}} \right)^3} = {\left( {{i^{4 \times 4 + 2}} + {{\left( {\dfrac{1}{i}} \right)}^{4 \times 6 + 1}}} \right)^3} \\\ = {\left( {{{\left( {{i^4}} \right)}^4} \times {i^2} + \dfrac{1}{{{{\left( {{i^4}} \right)}^6} \times {i^1}}}} \right)^3} \\\

We know that i4=1{i^4} = 1 and i2=1{i^2} = - 1. By using this relation, we get,

=((1)4×1+1(1)6× i)3 =(1+1i)3  = {\left( {{{\left( 1 \right)}^4} \times - 1 + \dfrac{1}{{{{\left( 1 \right)}^6} \times {\text{ }}i}}} \right)^3} \\\ = {\left( { - 1 + \dfrac{1}{i}} \right)^3} \\\

We know that 1i=i\dfrac{1}{i} = - i
=(1i)3= {\left( { - 1 - i} \right)^3}
We can take the negative sign outside. We get,
=(1+i)3= - {\left( {1 + i} \right)^3}
Using cubic expansion (a+b)3=a3+3a2b+3ab2+b3{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}, we get,
=(13+3×12×i+3×1×i2+i3)= - \left( {{1^3} + 3 \times {1^2} \times i + 3 \times 1 \times {i^2} + {i^3}} \right)
Using the relations i3=i{i^3} = - i and i2=1{i^2} = - 1, we get,

=(1+3i3i) =(2+2i) =22i  = - \left( {1 + 3i - 3 - i} \right) \\\ = - \left( { - 2 + 2i} \right) \\\ = 2 - 2i \\\

Therefore, the value of the expression is equal to 22i2 - 2i

So, the correct answer is option E.

Note: In this problem, we are only using the concept of powers of i{\text{i}} and exponents. We use the concept of the division algorithm to change the power of i to multiples of 4 and its remainder. The basic idea of division algorithm is that every number n can be written in the form n = mq + r{\text{n = mq + r}}, where r is remainder, q is the quotient, and m is the divisor.