Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The value of (cos(π2+x)+sin(π2+x)cos(π2x)sin(π2x))2\left(\frac{\cos\left(\frac{\pi}{2} + x\right) + \sin\left(\frac{\pi}{2}+ x\right)}{\cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right)}\right)^{2} is

A

1sin2x1+sin2x\frac{1 - \sin \, 2x}{1 + \sin \, 2x}

B

1+sin2x1sin2x\frac{1 + \sin \, 2x}{1 - \sin \, 2x}

C

1

D

None of these

Answer

1

Explanation

Solution

Consider (cos(π2+x)+sin(π2+x)cos(π2x)sin(π2x))2\left(\frac{\cos\left(\frac{\pi}{2} + x\right) + \sin\left(\frac{\pi}{2}+ x\right)}{\cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right)}\right)^{2} =(sinx+cosxsinxcosx)2= \left(\frac{-\sin x + \cos x}{\sin x - \cos x}\right)^{2} = \left\\{ - \left( \frac{\sin x - \cos x}{\sin x - \cos x}\right)\right\\}^{2} =(1)2=1= \left(-1\right)^{2} = 1