Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

The value of 1+i3(1+1i+1)2\left| \frac{1+ i \sqrt{3}}{\left( 1 + \frac{1}{i+1}\right)^2} \right| is

A

2020

B

99

C

54\frac{5}{4}

D

45\frac{4}{5}

Answer

45\frac{4}{5}

Explanation

Solution

1+i3(1+1i+1)2=(1+i3)(i+1)2(i+2)2(i2=1)\left|\frac{1+i \sqrt{3}}{\left(1+\frac{1}{i+1}\right)^{2}}\right|= \left|\frac{(1+i \sqrt{3})(i+1)^{2}}{(i+2)^{2}}\right|\left(\because i^{2}=-1\right)
=(1+i3)(i2+1+2i)(i2+4+4i)=\left|\frac{(1+i \sqrt{3})\left(i^{2}+1+2 i\right)}{\left(i^{2}+4+4 i\right)}\right|
=(1+i3)2i(4i+3)=\left|\frac{(1+i \sqrt{3}) 2 i}{(4 i+3)}\right|
=23+2i3+4i=\left|\frac{-2 \sqrt{3}+2 i}{3+4 i}\right|
=2(3+i)(34i)(3+4i)(34i)=2\left|\frac{(-\sqrt{3}+i)(3-4 i)}{(3+4 i)(3-4 i)}\right|
=233+3i+43i+425=2\left|\frac{-3 \sqrt{3}+3 i+4 \sqrt{3} i+4}{25}\right|
=225(433)+(3+43)i=\frac{2}{25}|(4-3 \sqrt{3})+(3+4 \sqrt{3}) i|
=225(433)2+(3+43)2=\frac{2}{25} \sqrt{(4-3 \sqrt{3})^{2}+(3+4 \sqrt{3})^{2}}
=22516+27243+9+48+243=\frac{2}{25} \sqrt{16+27-24 \sqrt{3}+9+48+24 \sqrt{3}}
=225100=2×1025=45=\frac{2}{25} \sqrt{100}=\frac{2 \times 10}{25}=\frac{4}{5}