Question
Question: The value of \(\left( {\cos \dfrac{{\pi}}{2} + i\sin \dfrac{{\pi}}{2}} \right)\left( {\cos \dfrac{{\...
The value of (cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞ is
A. 1
B. 0
C. −1
D. None of these
Solution
First, we shall analyze the given information so that we are able to solve this problem. Here, we are given (cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞ and we are asked to calculate the value of (cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞.
Since we all know eiθ=cosθ+isinθ , we need to substitute it in the given expression. We also need to apply the formula of the sum of the GP in this problem.
Formula to be used:
The formula to calculate the sum of the geometric series is as follows.
a+ax+ax2+....+∞=1−xa
Complete step by step answer:
The given expression is (cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞
Since we all know eiθ=cosθ+isinθ , we need to substitute it in the given expression.
We have cos2π+isin2π=ei2π ,cos4π+isin4π=ei4π ,cos8π+isin8π=ei8π
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=ei2π.ei4π.ei8π....∞
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=ei(2π+4π+8π+...+∞)
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=ei2π(1+21+41+81+...+∞)…………..(1)
Here (1+21+41+...+∞) is an infinite geometric series.
The formula to calculate the sum of the geometric series is as follows.
a+ax+ax2+....+∞=1−xa
Thus, (1+21+41+...+∞)=1−211
⇒(1+21+41+...+∞)=2
Now, we shall substitute the above result in the equation (1).
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=ei2π×2
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=eiπ
Since we all know eiθ=cosθ+isinθ , we need to substitute it in the above equation.
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=cosπ+isinπ
We know that cosπ=−1 and sinπ=0
Thus, we get
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=−1+i×0
⇒(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=−1
Therefore, we calculated(cos2π+isin2π)(cos4π+isin4π)(cos8π+isin8π).....∞=−1
So, the correct answer is “Option C”.
Note: We know that eiθ=cosθ+isinθ . Generally, a complex number consists of a real part and an imaginary part. For example, let us consider a complex number z=5+7i. In this example, the real part of z is 5 and the imaginary part of z is 7.
Similarly, eiθ=cosθ+isinθ, the real part of eiθ is cosθ and the imaginary part of eiθ is sinθ