Solveeit Logo

Question

Question: The value of \(\left( {\cos \dfrac{{\pi}}{2} + i\sin \dfrac{{\pi}}{2}} \right)\left( {\cos \dfrac{{\...

The value of (cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....\left( {\cos \dfrac{{\pi}}{2} + i\sin \dfrac{{\pi}}{2}} \right)\left( {\cos \dfrac{{\pi}}{4} + i\sin \dfrac{{\pi}}{4}} \right)\left( {\cos \dfrac{{\pi}}{8} + i\sin \dfrac{{\pi}}{8}} \right).....\infty is
A. 11
B. 00
C. 1 - 1
D. None of these

Explanation

Solution

First, we shall analyze the given information so that we are able to solve this problem. Here, we are given (cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....\left( {\cos \dfrac{{\pi}}{2} + i\sin \dfrac{{\pi}}{2}} \right)\left( {\cos \dfrac{{\pi}}{4} + i\sin \dfrac{{\pi}}{4}} \right)\left( {\cos \dfrac{{\pi}}{8} + i\sin \dfrac{{\pi}}{8}} \right).....\infty and we are asked to calculate the value of (cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....\left( {\cos \dfrac{{\pi}}{2} + i\sin \dfrac{{\pi}}{2}} \right)\left( {\cos \dfrac{{\pi}}{4} + i\sin \dfrac{{\pi}}{4}} \right)\left( {\cos \dfrac{{\pi}}{8} + i\sin \dfrac{{\pi}}{8}} \right).....\infty.
Since we all know eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta , we need to substitute it in the given expression. We also need to apply the formula of the sum of the GP in this problem.
Formula to be used:
The formula to calculate the sum of the geometric series is as follows.
a+ax+ax2+....+=a1xa + ax + a{x^2} + .... + \infty = \dfrac{a}{{1 - x}}

Complete step by step answer:
The given expression is (cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....\left( {\cos \dfrac{{\pi}}{2} + i\sin \dfrac{{\pi}}{2}} \right)\left( {\cos \dfrac{{\pi}}{4} + i\sin \dfrac{{\pi}}{4}} \right)\left( {\cos \dfrac{{\pi}}{8} + i\sin \dfrac{{\pi}}{8}} \right).....\infty
Since we all know eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta , we need to substitute it in the given expression.
We have cosπ2+isinπ2=eiπ2\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2} = {e^{i\dfrac{\pi }{2}}} ,cosπ4+isinπ4=eiπ4\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4} = {e^{i\dfrac{\pi }{4}}} ,cosπ8+isinπ8=eiπ8\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8} = {e^{i\dfrac{\pi }{8}}}
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=eiπ2.eiπ4.eiπ8....\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = {e^{i\dfrac{\pi }{2}}}.{e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{\pi }{8}}}....\infty
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=ei(π2+π4+π8+...+)\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = {e^{i\left( {\dfrac{\pi }{2} + \dfrac{\pi }{4} + \dfrac{\pi }{8} + ... + \infty } \right)}}
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=eiπ2(1+12+14+18+...+)\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = {e^{i\dfrac{\pi }{2}\left( {1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} + ... + \infty } \right)}}…………..(1)\left( 1 \right)
Here (1+12+14+...+)\left( {1 + \dfrac{1}{2} + \dfrac{1}{4} + ... + \infty } \right) is an infinite geometric series.
The formula to calculate the sum of the geometric series is as follows.
a+ax+ax2+....+=a1xa + ax + a{x^2} + .... + \infty = \dfrac{a}{{1 - x}}
Thus, (1+12+14+...+)=1112\left( {1 + \dfrac{1}{2} + \dfrac{1}{4} + ... + \infty } \right) = \dfrac{1}{{1 - \dfrac{1}{2}}}
(1+12+14+...+)=2\Rightarrow \left( {1 + \dfrac{1}{2} + \dfrac{1}{4} + ... + \infty } \right) = 2
Now, we shall substitute the above result in the equation (1)\left( 1 \right).
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=eiπ2×2\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = {e^{i\dfrac{\pi }{2} \times 2}}
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=eiπ\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = {e^{i\pi }}
Since we all know eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta , we need to substitute it in the above equation.
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=cosπ+isinπ\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = \cos \pi + i\sin \pi
We know that cosπ=1\cos \pi = - 1 and sinπ=0\sin \pi = 0
Thus, we get
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=1+i×0\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = - 1 + i \times 0
(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=1\Rightarrow \left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = - 1
Therefore, we calculated(cosπ2+isinπ2)(cosπ4+isinπ4)(cosπ8+isinπ8).....=1\left( {\cos \dfrac{\pi }{2} + i\sin \dfrac{\pi }{2}} \right)\left( {\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4}} \right)\left( {\cos \dfrac{\pi }{8} + i\sin \dfrac{\pi }{8}} \right).....\infty = - 1

So, the correct answer is “Option C”.

Note: We know that eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta . Generally, a complex number consists of a real part and an imaginary part. For example, let us consider a complex number z=5+7iz = 5 + 7i. In this example, the real part of zz is 55 and the imaginary part of zz is 77.
Similarly, eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta , the real part of eiθ{e^{i\theta }} is cosθ\cos \theta and the imaginary part of eiθ{e^{i\theta }} is sinθ\sin \theta