Solveeit Logo

Question

Question: The value of \(\left| \begin{matrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{matr...

The value of 265240219240225198219198181\left| \begin{matrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{matrix} \right| is equal to.

A

0

B

679

C

779

D

1000

Answer

0

Explanation

Solution

265240219240225198219198181=252121915271982117181\left| \begin{matrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{matrix} \right| = \left| \begin{matrix} 25 & 21 & 219 \\ 15 & 27 & 198 \\ 21 & 17 & 181 \end{matrix} \right|

{Applying C1C1C2;C2C2C3}C_{1} \rightarrow C_{1} - C_{2};C_{2} \rightarrow C_{2} - C_{3}\}

=$\left| \begin{matrix} 4 & 21 & 9 \

  • 12 & 27 & - 72 \ 4 & 17 & 11 \end{matrix} \right|$

{Applying C1C1C2;C3C310C2}C_{1} \rightarrow C_{1} - C_{2};C_{3} \rightarrow C_{3} - 10C_{2}\}

= $\left| \begin{matrix} 4 & 21 & 9 \

  • 12 & 27 & - 72 \ 0 & - 4 & 2 \end{matrix} \right|{ApplyingR_{3} \rightarrow R_{3} - R_{1}$}

=$4\left| \begin{matrix} 1 & 21 & 9 \

  • 3 & 27 & - 72 \ 0 & - 4 & 2 \end{matrix} \right| = 4\left| \begin{matrix} 1 & 21 & 9 \ 0 & 90 & - 45 \ 0 & - 4 & 2 \end{matrix} \right|byby R_{2} \rightarrow 3R_{1} + R_{2}$

= 2X=[3202]+[1274]2X=[4472]2X = \begin{bmatrix} 3 & 2 \\ 0 & - 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix} \Rightarrow 2X = \begin{bmatrix} 4 & 4 \\ 7 & 2 \end{bmatrix}= 0.