Solveeit Logo

Question

Question: The value of \(\left| \begin{matrix} 1 + \omega & \omega^{2} & - \omega \\ 1 + \omega^{2} & \omega &...

The value of 1+ωω2ω1+ω2ωω2ω2+ωωω2\left| \begin{matrix} 1 + \omega & \omega^{2} & - \omega \\ 1 + \omega^{2} & \omega & - \omega^{2} \\ \omega^{2} + \omega & \omega & - \omega^{2} \end{matrix} \right| is equal to

A

0

B

2w

C

2w2

D

– 3w2

Answer

– 3w2

Explanation

Solution

Sol. Operating (C1 ® C1 + C2)

1 + \omega + \omega^{2} & \omega^{2} & - \omega \\ 1 + \omega^{2} + \omega & \omega & - \omega^{2} \\ \omega^{2} + 2\omega & \omega & - \omega^{2} \end{matrix} \right|$$ = w(–w) $\left| \begin{matrix} 0 & \omega & 1 \\ 0 & 1 & \omega \\ \omega - 1 & 1 & \omega \end{matrix} \right|$ = – w<sup>2</sup> (1 + 1 + 1) = – 3w<sup>2</sup>