Question
Question: The value of \(\left| \begin{matrix} 1 + \omega & \omega^{2} & - \omega \\ 1 + \omega^{2} & \omega &...
The value of 1+ω1+ω2ω2+ωω2ωω−ω−ω2−ω2 is equal to
A
0
B
2w
C
2w2
D
– 3w2
Answer
– 3w2
Explanation
Solution
Sol. Operating (C1 ® C1 + C2)
1 + \omega + \omega^{2} & \omega^{2} & - \omega \\ 1 + \omega^{2} + \omega & \omega & - \omega^{2} \\ \omega^{2} + 2\omega & \omega & - \omega^{2} \end{matrix} \right|$$ = w(–w) $\left| \begin{matrix} 0 & \omega & 1 \\ 0 & 1 & \omega \\ \omega - 1 & 1 & \omega \end{matrix} \right|$ = – w<sup>2</sup> (1 + 1 + 1) = – 3w<sup>2</sup>