Solveeit Logo

Question

Question: The value of \(\left| \begin{matrix} 1 & \omega & 2\omega^{2} \\ 2 & 2\omega^{2} & 4\omega^{3} \\ 3 ...

The value of 1ω2ω222ω24ω333ω36ω4\left| \begin{matrix} 1 & \omega & 2\omega^{2} \\ 2 & 2\omega^{2} & 4\omega^{3} \\ 3 & 3\omega^{3} & 6\omega^{4} \end{matrix} \right|is equal to

A

0

B

1

C

2

D

3

Answer

0

Explanation

Solution

Sol.

1 & \omega & 2\omega^{2} \\ 2 & 2\omega^{2} & 4\omega^{3} \\ 3 & 3\omega^{3} & 6\omega^{4} \end{matrix} \right| = 2\left| \begin{matrix} 1 & \omega & \omega^{2} \\ 2 & 2\omega^{2} & 2 \\ 3 & 3 & 3\omega \end{matrix} \right|$$ = 2[1(6w<sup>3</sup> – 6) – w (6 w – 6) + w <sup>2</sup> (6 – 6 w <sup>2</sup>)] = 12[–w(w – 1) + w<sup>2</sup>(1 – w<sup>2</sup>)] ̃ 12[–w<sup>2</sup> + w + w<sup>2</sup> – w<sup>4</sup>]= 12[–w <sup>2</sup> – 1 – w] = – 12[1 + w + w <sup>2</sup>] = 0