Solveeit Logo

Question

Question: The value of \(\left| \begin{matrix} 1 & 1 & 1 \\ bc & ca & ab \\ b + c & c + a & a + b \end{matrix}...

The value of 111bccaabb+cc+aa+b\left| \begin{matrix} 1 & 1 & 1 \\ bc & ca & ab \\ b + c & c + a & a + b \end{matrix} \right|is.

A

1

B

0

C

(ab)(bc)(ca)(a - b)(b - c)(c - a)

D

(a+b)(b+c)(c+a)(a + b)(b + c)(c + a)

Answer

(ab)(bc)(ca)(a - b)(b - c)(c - a)

Explanation

Solution

111bccaabb+cc+aa+b\left| \begin{matrix} 1 & 1 & 1 \\ bc & ca & ab \\ b + c & c + a & a + b \end{matrix} \right|=001c(ba)a(cb)abbac+aa+b\left| \begin{matrix} 0 & 0 & 1 \\ c(b - a) & a(c - b) & ab \\ b - a & c + a & a + b \end{matrix} \right|

{C1C1C2,C2C2C3}\{ C_{1} \rightarrow C_{1} - C_{2},C_{2} \rightarrow C_{2} - C_{3}\}

= (ba)(cb)001caab11a+b(b - a)(c - b)\left| \begin{matrix} 0 & 0 & 1 \\ c & a & ab \\ 1 & 1 & a + b \end{matrix} \right|= (ba)(ca)(ca)(b - a)(c - a)(c - a)

=(ab)(bc)(ca)= (a - b)(b - c)(c - a).