Solveeit Logo

Question

Question: The value of ∆ = \(\left| \begin{matrix} 1 & 1 & 1 \\ bc & ca & ab \\ b + c & c + a & a + b \end{mat...

The value of ∆ = 111bccaabb+cc+aa+b\left| \begin{matrix} 1 & 1 & 1 \\ bc & ca & ab \\ b + c & c + a & a + b \end{matrix} \right| is –

A

1

B

(a – b) (b – c)(c – a)

C

(a + b) (b + c)(c + a)

D

0

Answer

(a – b) (b – c)(c – a)

Explanation

Solution

c3 → c3 – c1, c2 → c2 – c1

∆ = 100bcc(ab)b(ac)b+cabac\left| \begin{matrix} 1 & 0 & 0 \\ bc & c(a–b) & b(a–c) \\ b + c & a–b & a–c \end{matrix} \right| = (a – b)(a – c) cb11\left| \begin{matrix} c & b \\ 1 & 1 \end{matrix} \right|

= (a – b) (b – c) (c – a)