Solveeit Logo

Question

Question: The value of \(\left| \begin{aligned} & \begin{matrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 4 & 4 & 3 ...

The value of 1000220044305554000066665\left| \begin{aligned} & \begin{matrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 4 & 4 & 3 & 0 \\ 5 & 5 & 5 & 4 \end{matrix}\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \\ & \begin{matrix} 6 & 6 & 6 & 6 \end{matrix}5 \end{aligned} \right| is

A

6!

B

5!

C

1.22.3.43.54.641.2^{2}.3.4^{3}.5^{4}.6^{4}

D

None

Answer

5!

Explanation

Solution

The elements in the leading diagonal are 1, 2, 3, 4, 5. On one side of the leading diagonal all the elements are zero.

\therefore The value of the determinant

= The product of the elements in the leading diagonal

= 1.2.3.4.5 = 5!