Question
Mathematics Question on Determinants
The value of a2 b2 2ab 2aba2b2b22aba2 is
(a2+b2)3
(a3+b3)2
(a4+b4)2
(a2+b2)4
(a3+b3)2
Solution
Let Δ=a2 b2 2ab 2aba2b2b22aba2
Applying, C1→C2+C3, we get ⇒
Δ(a+b)2 (a+b)2 (a+b)2 2aba2b2b22aba2
=(a+b)21 1 1 2aba2b2b22aba2
Apply R2→R1−R1,R3⇒R3−R1,
we get Δ=(a+b)21 0 0 2aba2−2abb2−2abb22ab−b2a2−b2
=(a+b)2a(a−2b) b(b−2a) b(2a−b)(a−b)(a+b)
={{(a+b)}^{2}}\\{a(a-b)(a+b)(a-2b)
-{{b}^{2}}(b-2a)\,(2a-b)\\}
=(a+b)2a(a2−b2)(a−2b)+b2(2a−b)2
={{(a+b)}^{2}}\\{({{a}^{2}}-{{b}^{2}})\,({{a}^{2}}-2ab)
+{{b}^{2}}(4{{a}^{2}}+{{b}^{2}}-4ab)\\}
={{(a+b)}^{2}}\\{{{a}^{4}}-{{a}^{2}}{{b}^{2}}-2{{a}^{3}}b+2a{{b}^{3}}
+4{{a}^{2}}{{b}^{2}}+{{b}^{4}}-4a{{b}^{3}}\\}
=(a+b)2a4+b4+3a2b2−2a3b−2ab3
=(a+b)2(a2+b2)2−2ab(a2+b2)+a2b2
=(a+b)2(a2+b2)(a2+b2−2ab)+a2b2
=(a+b)2(a2+b2)(a−b)2+a2b2
=(a2+b2)(a2−b2)+a2b2(a+b)2
=(a4−b4)(a2−b2)+a2b2(a+b)2
=a6−a2b4−a4b2+b6+a4b2+a2b4+2a3b3
=a6+2a3b3+b6=(a3+b3)2