Solveeit Logo

Question

Question: The value of \({{\left( 1+{{\omega }^{2}}+2\omega \right)}^{3n}}-{{\left( 1+\omega +2{{\omega }^{2}}...

The value of (1+ω2+2ω)3n(1+ω+2ω2)3n{{\left( 1+{{\omega }^{2}}+2\omega \right)}^{3n}}-{{\left( 1+\omega +2{{\omega }^{2}} \right)}^{3n}} is equal to?
A) Zero\text{A) }Zero
B) 1\text{B) }1
C) ω\text{C) }\omega
D) ω2\text{D) }{{\omega }^{2}}

Explanation

Solution

In this question we have been an equation which has the term ω\omega in it which is the cube root of negative unity which is represented as ω=1±i32\omega =\dfrac{-1\pm i\sqrt{3}}{2}. In this question we will use the property 1+ω+ω2=01+\omega +{{\omega }^{2}}=0 and ω3=1{{\omega }^{3}}=1by first converting the parts of the expression into this format and then simplify the expression to get the required answer.

Complete step by step solution:
We have the expression given to us as:
(1+ω2+2ω)3n(1+ω+2ω2)3n\Rightarrow {{\left( 1+{{\omega }^{2}}+2\omega \right)}^{3n}}-{{\left( 1+\omega +2{{\omega }^{2}} \right)}^{3n}}
Now consider A=(1+ω2+2ω)3nA={{\left( 1+{{\omega }^{2}}+2\omega \right)}^{3n}} and B=(1+ω+2ω2)3nB={{\left( 1+\omega +2{{\omega }^{2}} \right)}^{3n}} therefore the expression becomes ABA-B.
Now consider AA,
(1+ω2+2ω)3n\Rightarrow {{\left( 1+{{\omega }^{2}}+2\omega \right)}^{3n}}
In the expression, we have the term 2ω2\omega , on splitting the term, we get:
(1+ω2+(ω+ω))3n\Rightarrow {{\left( 1+{{\omega }^{2}}+\left( \omega +\omega \right) \right)}^{3n}}
On simplifying the bracket, we get:
(1+ω2+ω+ω)3n\Rightarrow {{\left( 1+{{\omega }^{2}}+\omega +\omega \right)}^{3n}}
On rearranging the expression, we get:
(1+ω+ω2+ω)3n\Rightarrow {{\left( 1+\omega +{{\omega }^{2}}+\omega \right)}^{3n}}
Now we have the first three terms of the expression in the form of 1+ω+ω21+\omega +{{\omega }^{2}} and by using the property that 1+ω+ω2=01+\omega +{{\omega }^{2}}=0, we get:
(0+ω)3n\Rightarrow {{\left( 0+\omega \right)}^{3n}}
On simplifying, we get:
A=(ω)3n\Rightarrow A={{\left( \omega \right)}^{3n}}
Now consider BB,
(1+ω+2ω2)\Rightarrow \left( 1+\omega +2{{\omega }^{2}} \right)
In the expression, we have the term 2ω22{{\omega }^{2}}, on splitting the term, we get:
(1+ω+(ω2+ω2))3n\Rightarrow {{\left( 1+\omega +\left( {{\omega }^{2}}+{{\omega }^{2}} \right) \right)}^{3n}}
On simplifying the bracket, we get:
(1+ω+ω2+ω2)3n\Rightarrow {{\left( 1+\omega +{{\omega }^{2}}+{{\omega }^{2}} \right)}^{3n}}
Now we have the first three terms of the expression in the form of 1+ω+ω21+\omega +{{\omega }^{2}} and by using the property that 1+ω+ω2=01+\omega +{{\omega }^{2}}=0, we get:
(0+ω2)3n\Rightarrow {{\left( 0+{{\omega }^{2}} \right)}^{3n}}
On simplifying, we get:
B=(ω2)3n\Rightarrow B={{\left( {{\omega }^{2}} \right)}^{3n}}
Now the expression is in the form of ABA-B, on substituting the values, we get:
ω3n(ω2)3n\Rightarrow {{\omega }^{3n}}-{{\left( {{\omega }^{2}} \right)}^{3n}}
Now we know the property of exponents that abc=(ab)c{{a}^{bc}}={{\left( {{a}^{b}} \right)}^{c}}, on using this property, we get:
(ω3)n(ω2)3n\Rightarrow {{\left( {{\omega }^{3}} \right)}^{n}}-{{\left( {{\omega }^{2}} \right)}^{3n}}
Now we know the property of exponents that (ab)cd=(ac)bd{{\left( {{a}^{b}} \right)}^{cd}}={{\left( {{a}^{c}} \right)}^{bd}}, on using this property, we get:
(ω3)n(ω3)2n\Rightarrow {{\left( {{\omega }^{3}} \right)}^{n}}-{{\left( {{\omega }^{3}} \right)}^{2n}}
Now we know that ω3=1{{\omega }^{3}}=1, on substituting, we get:
(1)n(1)2n\Rightarrow {{\left( 1 \right)}^{n}}-{{\left( 1 \right)}^{2n}}
Now we know that 11 raised to any real number is 11, therefore, we get:
11\Rightarrow 1-1
On simplifying, we get:
0\Rightarrow 0, which is the required solution.

So, the correct answer is “Option A”.

Note: It is to be remembered that ω\omega is used in complex numbers for ease in factorization. ω\omega is the root of the quadratic equation x2+x+1=0{{x}^{2}}+x+1=0. The term ii in the value of ω\omega represents the complex number which has a value 1\sqrt{-1} also referred to as the square root of negative 11.