Solveeit Logo

Question

Question: The value of \({{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}\) is: a). 16 b). -16 c). ...

The value of (1+i)8+(1i)8{{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}} is:
a). 16
b). -16
c). 32
d). -32

Explanation

Solution

Hint: In this problem, first we will use the formula which is used to convert complex numbers of the form a+bia+bi to the form of reiθr{{e}^{i\theta }} . Then will apply the law of indices to simplify the terms. Adding both the terms in the final step will yield us the answer.

Complete step-by-step solution -
The formula we are going to use is a+bi=(a2+b2)eiθa+bi=\left( \sqrt{{{a}^{2}}+{{b}^{2}}} \right){{e}^{i\theta }} , where θ=tan1(ba)\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) .
Thus, applying the formula to the first term in the question, we get,
1+i=(12+12)eiθ1+i=\left( \sqrt{{{1}^{2}}+{{1}^{2}}} \right){{e}^{i\theta }} , where θ=tan1(11)\theta ={{\tan }^{-1}}\left( \dfrac{1}{1} \right) .
Solving further we get, 1+i=1+1eiπ41+i=\sqrt{1+1}{{e}^{i\dfrac{\pi }{4}}} , Since θ=tan1(1)\theta ={{\tan }^{-1}}\left( 1 \right) which is (π4)\left( \dfrac{\pi }{4} \right)
1+i=2eiπ4\therefore 1+i=\sqrt{2}{{e}^{\dfrac{i\pi }{4}}} ……………………. (i)
Similarly let us apply the same formula to the second term (1i)\left( 1-i \right) .
Thus, applying the formula, we get,
1i=(12+(1)2)eiθ1-i=\left( \sqrt{{{1}^{2}}+{{\left( -1 \right)}^{2}}} \right){{e}^{i\theta }} , where θ=tan1(11)+π\theta ={{\tan }^{-1}}\left( \left| \dfrac{-1}{1} \right| \right)+\pi
Solving further we get,
1i=1+1ei(5π4)1-i=\sqrt{1+1}{{e}^{i\left( \dfrac{5\pi }{4} \right)}} since θ=tan1(1)+π\theta ={{\tan }^{-1}}\left( \left| -1 \right| \right)+\pi which is (5π4)\left( \dfrac{5\pi }{4} \right)
1i=2e5iπ4\therefore 1-i=\sqrt{2}{{e}^{\dfrac{5i\pi }{4}}} …………………. (ii)
Now, the equation says,
(1+i)8+(1i)8=(2eiπ4)8+(2e5iπ4)8{{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}={{\left( \sqrt{2}{{e}^{\dfrac{i\pi }{4}}} \right)}^{8}}+{{\left( \sqrt{2}{{e}^{\dfrac{5i\pi }{4}}} \right)}^{8}} …………. Substituting from (i) and (ii).
Now applying the law of indices which says (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} , we get,
(2)8(eiπ4×8)+(2)8(e5iπ4×8){{\left( \sqrt{2} \right)}^{8}}\left( {{e}^{\dfrac{i\pi }{4}\times 8}} \right)+{{\left( \sqrt{2} \right)}^{8}}\left( {{e}^{\dfrac{5i\pi }{4}\times 8}} \right)
=(212×8)(eiπ×2)+(212×8)(eiπ×10)=\left( {{2}^{\dfrac{1}{2}\times 8}} \right)\left( {{e}^{i\pi \times 2}} \right)+\left( {{2}^{\dfrac{1}{2}\times 8}} \right)\left( {{e}^{i\pi \times 10}} \right)…………………. Since 2=212\sqrt{2}={{2}^{\dfrac{1}{2}}}
(24)(e2πi)+(24)(e10πi)\left( {{2}^{4}} \right)\left( {{e}^{2\pi i}} \right)+\left( {{2}^{4}} \right)\left( {{e}^{10\pi i}} \right) ………………… (iii)
Now we know the Euler’s formula as eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta .
Now let us put θ\theta as 2π2\pi and as 10π10\pi one at a time.
θ=2πe2πi=cos(2π)+isin(2π)\theta =2\pi \Rightarrow {{e}^{2\pi i}}=\cos \left( 2\pi \right)+i\sin \left( 2\pi \right)
e2πi=1\Rightarrow {{e}^{2\pi i}}=1 ……….. (iv)
θ=10πe10πi=cos(10π)+isin(10π)\theta = 10\pi \Rightarrow {{e}^{10\pi i}}=\cos \left( 10\pi \right)+i\sin \left( 10\pi \right)
e10πi=1\Rightarrow {{e}^{10\pi i}}=1 …………… (v)
Substituting (iv) and (v) in (iii) we get,
(24)(1)+(24)(1) =24+24 =16+16 32 \begin{aligned} & \left( {{2}^{4}} \right)\left( 1 \right)+\left( {{2}^{4}} \right)\left( 1 \right) \\\ & ={{2}^{4}}+{{2}^{4}} \\\ & =16+16 \\\ & 32 \\\ \end{aligned}
Thus, (1+i)8+(1i)8=32{{\left( 1+i \right)}^{8}}+{{\left( 1-i \right)}^{8}}=32 .
Therefore, option (c) is correct.

Note: An important point we need to remember is the formula for angle θ=tan1(ba)\theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right) .
The formula actually has four parts,
i) θ=tan1(ba)\theta ={{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)I\left( a,b \right)\in I quadrant.
ii) θ=πtan1(ba)\theta =\pi -{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)II\left( a,b \right)\in II quadrant.
iii) θ=π+tan1(ba)\theta =\pi +{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)III\left( a,b \right)\in III quadrant.
iv) θ=tan1(ba)\theta =-{{\tan }^{-1}}\left( \left| \dfrac{b}{a} \right| \right) , if (a,b)IV\left( a,b \right)\in IV quadrant.
Applying the wrong formula would result in a wrong calculation of angle and thus would give you a wrong answer.