Solveeit Logo

Question

Question: The value of \({{\left( 1+i \right)}^{4}}+{{\left( 1-i \right)}^{4}}\) is \(\begin{aligned} &...

The value of (1+i)4+(1i)4{{\left( 1+i \right)}^{4}}+{{\left( 1-i \right)}^{4}} is
a)8 b)8i c)8 d)32 \begin{aligned} & a)8 \\\ & b)8i \\\ & c)-8 \\\ & d)32 \\\ \end{aligned}

Explanation

Solution

Now first we will consider (1+i)4{{\left( 1+i \right)}^{4}}. First we will rewrite the expression with the help of property (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} . Now we will expand the bracket with the help of formula (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} . Now we know that i2=1{{i}^{2}}=-1 Hence using this we will easily get the value of (1+i)4{{\left( 1+i \right)}^{4}} . In the same way we will expand the expression (1i)4{{\left( 1-i \right)}^{4}} . Now we will add the two expressions and hence find the value of (1+i)4+(1i)4{{\left( 1+i \right)}^{4}}+{{\left( 1-i \right)}^{4}} .

Complete step by step answer:
Now we are given a complex expression (1+i)4+(1i)4{{\left( 1+i \right)}^{4}}+{{\left( 1-i \right)}^{4}} .
Now any complex number z is written in the form z=a+ibz=a+ib where a and b is the real numbers and i=1i=\sqrt{-1} .
Now 1+i1+i and 1i1-i are the two complex numbers where i=1i=\sqrt{-1} .
Let us find find the values of (1+i)4{{\left( 1+i \right)}^{4}} and (1i)4{{\left( 1-i \right)}^{4}}
Now let us first consider (1+i)4{{\left( 1+i \right)}^{4}}
We know the property (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}
Hence we can write the expression as ((1+i)2)2{{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}
Now we know that (a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
Hence using this we get, ((1+i)2)2=(1+i2+2i)2{{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}={{\left( 1+{{i}^{2}}+2i \right)}^{2}}
Now we have i2=1{{i}^{2}}=-1 . Substituting the value in the expression we get

& {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}={{\left( 1-1+2i \right)}^{2}} \\\ & \Rightarrow {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}={{\left( 2i \right)}^{2}} \\\ & \Rightarrow {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}=4{{i}^{2}} \\\ & \Rightarrow {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}=-4..................................\left( 1 \right) \\\ \end{aligned}$$ Now let us consider ${{\left( 1-i \right)}^{4}}$ . Again using the property ${{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}$ Hence we can write the expression as ${{\left( {{\left( 1-i \right)}^{2}} \right)}^{2}}$ Now we know that ${{\left( ab \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ Using this formula in the above expression we get, ${{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}={{\left( 1+{{i}^{2}}-2i \right)}^{2}}$ Now we have ${{i}^{2}}=-1$ . Let us substitute this value in the expression obtained. Hence we get, $$\begin{aligned} & {{\left( {{\left( 1-i \right)}^{2}} \right)}^{2}}={{\left( 1-1-2i \right)}^{2}} \\\ & \Rightarrow {{\left( {{\left( 1-i \right)}^{2}} \right)}^{2}}={{\left( -2i \right)}^{2}} \\\ & \Rightarrow {{\left( {{\left( 1-i \right)}^{2}} \right)}^{2}}=4{{i}^{2}} \\\ & \Rightarrow {{\left( {{\left( 1-i \right)}^{2}} \right)}^{2}}=-4..................................\left( 2 \right) \\\ \end{aligned}$$ Now let us add equation (1) and equation (2), $$\begin{aligned} & {{\left( {{\left( 1+i \right)}^{2}} \right)}^{2}}+{{\left( {{\left( 1-i \right)}^{2}} \right)}^{2}}=-4+\left( -4 \right) \\\ & \Rightarrow {{\left( 1+i \right)}^{4}}+{{\left( 1-i \right)}^{4}}=-8 \\\ \end{aligned}$$ Hence we get the value of ${{\left( 1+i \right)}^{4}}+{{\left( 1-i \right)}^{4}}$ is – 8. **So, the correct answer is “Option a”.** **Note:** Now note that despite the negative sign in the second expression we get the same values for both the expressions, which is – 4 because the square of the negative number is positive. Also we have ${{i}^{2}}=-1$ .